100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

comprehensive well calculated solutions, manuals A+ Graded,PASS Guaranteed with a Benchmark of 90%

Beoordeling
-
Verkocht
-
Pagina's
17
Cijfer
A+
Geüpload op
21-09-2025
Geschreven in
2025/2026

Chapter 1: Precalculus Review & Limits Key Concepts  Functions and Graphs  Polynomial, Rational, Exponential, and Logarithmic Functions  Trigonometric Functions  Inverse Functions  Limits and Continuity Step-by-Step Worked Examples Example 1: Evaluate the limit lim⁡x→3(2x2−5x+1)lim_{x to 3} (2x^2 - 5x + 1)limx→3(2x2−5x+1) Solution: 1. Substitute x=3x = 3x=3 directly (polynomial limits can be evaluated directly). 2. Calculate: 2(3)2−5(3)+1=18−15+1=42(3)^2 - 5(3) + 1 = 18 - 15 + 1 = 42(3)2−5(3)+1=18−15+1=4. Answer: 4 Example 2: Limit of a rational function lim⁡x→2x2−4x−2lim_{x to 2} frac{x^2 - 4}{x - 2}limx→2x−2x2−4 Solution: 1. Factor numerator: x2−4=(x−2)(x+2)x^2 - 4 = (x - 2)(x + 2)x2−4=(x−2)(x+2). 2. Simplify: (x−2)(x+2)x−2=x+2frac{(x-2)(x+2)}{x-2} = x + 2x−2(x−2)(x+2)=x+2. 3. Substitute x=2x = 2x=2: 2+2=42 + 2 = 42+2=4. Answer: 4 Example 3: Continuity Check Determine if f(x)=x2−1x−1f(x) = frac{x^2 - 1}{x-1}f(x)=x−1x2−1 is continuous at x=1x = 1x=1. Solution: 1. Factor numerator: x2−1=(x−1)(x+1)x^2 - 1 = (x - 1)(x + 1)x2−1=(x−1)(x+1). 2. Simplify function: f(x)=x+1f(x) = x + 1f(x)=x+1, for x≠1x 3. Find lim⁡x→1f(x)=2lim_{x to 1} f(x) = 2limx→1f(x)=2. 4. Function not defined at x = 1"), so discontinuous. **Answer:** Discontinuous at (x = 1. Chapter 2: Derivatives Key Concepts  Definition of Derivative  Power Rule, Product Rule, Quotient Rule  Chain Rule  Implicit Differentiation  Higher Order Derivatives  Derivatives of Trigonometric, Exponential, and Logarithmic Functions Step-by-Step Worked Examples Example 1: Basic derivative using power rule Find ddx(5x4−3x2+7)frac{d}{dx} (5x^4 - 3x^2 + 7)dxd(5x4−3x2+7). Solution: 1. Apply power rule term by term: ddx[xn]=nxn−1frac{d}{dx}[x^n] = nx^{n-1}dxd [xn]=nxn−1. 2. Calculate: o ddx[5x4]=20x3frac{d}{dx}[5x^4] = 20x^3dxd[5x4]=20x3 o ddx[−3x2]=−6xfrac{d}{dx}[-3x^2] = -6xdxd[−3x2]=−6x o ddx[7]=0frac{d}{dx}[7] = 0dxd[7]=0 3. Combine: 20x3−6x20x^3 - 6x20x3−6x Answer: 20x3−6x20x^3 - 6x20x3−6x Example 2: Product Rule Find ddx[(x2+1)(sin⁡x)]frac{d}{dx}[(x^2 + 1)(sin x)]dxd[(x2+1)(sinx)]. Solution: 1. Apply product rule: (uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′. 2. Let u=x2+1u = x^2 + 1u=x2+1, v=sin⁡xv = sin xv=sinx. o u′=2xu' = 2xu′=2x, v′=cos⁡xv' = cos xv′=cosx 3. Compute: u′v+uv′=(2x)(sin⁡x)+(x2+1)(cos⁡x)u'v + uv' = (2x)(sin x) + (x^2 + 1)(cos x)u′v+uv′=(2x)(sinx)+(x2+1)(cosx) Answer: 2xsin⁡x+(x2+1)cos⁡x2xsin x + (x^2 + 1)cos x2xsinx+(x2+1)cosx Example 3: Chain Rule Find ddx[ln⁡(3x2+2)]frac{d}{dx}[ln(3x^2 + 2)]dxd[ln(3x2+2)]. Solution: 1. Recall ddx[ln⁡f(x)]=f′(x)f(x)frac{d}{dx}[ln f(x)] = frac{f'(x)}{f(x)}dxd [lnf(x)]=f(x)f′(x). 2. Compute f(x)=3x2+2f(x) = 3x^2 + 2f(x)=3x2+2, f′(x)=6xf'(x) = 6xf′(x)=6x. 3. Apply formula: 6x3x2+2frac{6x}{3x^2 + 2}3x2+26x Answer: 6x3x2+2frac{6x}{3x^2 + 2}3x2+26x

Meer zien Lees minder
Instelling
Calculus-
Vak
Calculus-










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Calculus-
Vak
Calculus-

Documentinformatie

Geüpload op
21 september 2025
Aantal pagina's
17
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Chapter 1: Precalculus Review & Limits
Key Concepts
 Functions and Graphs
 Polynomial, Rational, Exponential, and Logarithmic Functions
 Trigonometric Functions
 Inverse Functions
 Limits and Continuity

Step-by-Step Worked Examples
Example 1: Evaluate the limit

lim⁡x→3(2x2−5x+1)\lim_{x \to 3} (2x^2 - 5x + 1)limx→3(2x2−5x+1)

Solution:

1. Substitute x=3x = 3x=3 directly (polynomial limits can be evaluated directly).
2. Calculate: 2(3)2−5(3)+1=18−15+1=42(3)^2 - 5(3) + 1 = 18 - 15 + 1 =
42(3)2−5(3)+1=18−15+1=4. Answer: 4

Example 2: Limit of a rational function

lim⁡x→2x2−4x−2\lim_{x \to 2} \frac{x^2 - 4}{x - 2}limx→2x−2x2−4

Solution:

1. Factor numerator: x2−4=(x−2)(x+2)x^2 - 4 = (x - 2)(x + 2)x2−4=(x−2)(x+2).
2. Simplify: (x−2)(x+2)x−2=x+2\frac{(x-2)(x+2)}{x-2} = x + 2x−2(x−2)(x+2)=x+2.
3. Substitute x=2x = 2x=2: 2+2=42 + 2 = 42+2=4. Answer: 4

Example 3: Continuity Check

Determine if f(x)=x2−1x−1f(x) = \frac{x^2 - 1}{x-1}f(x)=x−1x2−1 is continuous at x=1x =
1x=1.

Solution:

1. Factor numerator: x2−1=(x−1)(x+1)x^2 - 1 = (x - 1)(x + 1)x2−1=(x−1)(x+1).
2. Simplify function: f(x)=x+1f(x) = x + 1f(x)=x+1, for x≠1x \
3. Find lim⁡x→1f(x)=2\lim_{x \to 1} f(x) = 2limx→1f(x)=2.
4. Function not defined at x = 1"), so discontinuous. **Answer:** Discontinuous at \(x = 1.

,Chapter 2: Derivatives
Key Concepts
 Definition of Derivative
 Power Rule, Product Rule, Quotient Rule
 Chain Rule
 Implicit Differentiation
 Higher Order Derivatives
 Derivatives of Trigonometric, Exponential, and Logarithmic Functions

Step-by-Step Worked Examples
Example 1: Basic derivative using power rule

Find ddx(5x4−3x2+7)\frac{d}{dx} (5x^4 - 3x^2 + 7)dxd(5x4−3x2+7).

Solution:

1. Apply power rule term by term: ddx[xn]=nxn−1\frac{d}{dx}[x^n] = nx^{n-1}dxd
[xn]=nxn−1.
2. Calculate:
o ddx[5x4]=20x3\frac{d}{dx}[5x^4] = 20x^3dxd[5x4]=20x3
o ddx[−3x2]=−6x\frac{d}{dx}[-3x^2] = -6xdxd[−3x2]=−6x
o ddx[7]=0\frac{d}{dx}[7] = 0dxd[7]=0
3. Combine: 20x3−6x20x^3 - 6x20x3−6x Answer: 20x3−6x20x^3 - 6x20x3−6x

Example 2: Product Rule

Find ddx[(x2+1)(sin⁡x)]\frac{d}{dx}[(x^2 + 1)(\sin x)]dxd[(x2+1)(sinx)].

Solution:

1. Apply product rule: (uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′.
2. Let u=x2+1u = x^2 + 1u=x2+1, v=sin⁡xv = \sin xv=sinx.
o u′=2xu' = 2xu′=2x, v′=cos⁡xv' = \cos xv′=cosx
3. Compute: u′v+uv′=(2x)(sin⁡x)+(x2+1)(cos⁡x)u'v + uv' = (2x)(\sin x) + (x^2 + 1)(\cos
x)u′v+uv′=(2x)(sinx)+(x2+1)(cosx) Answer: 2xsin⁡x+(x2+1)cos⁡x2x\sin x + (x^2 +
1)\cos x2xsinx+(x2+1)cosx

Example 3: Chain Rule

, Find ddx[ln⁡(3x2+2)]\frac{d}{dx}[\ln(3x^2 + 2)]dxd[ln(3x2+2)].

Solution:

1. Recall ddx[ln⁡f(x)]=f′(x)f(x)\frac{d}{dx}[\ln f(x)] = \frac{f'(x)}{f(x)}dxd
[lnf(x)]=f(x)f′(x).
2. Compute f(x)=3x2+2f(x) = 3x^2 + 2f(x)=3x2+2, f′(x)=6xf'(x) = 6xf′(x)=6x.
3. Apply formula: 6x3x2+2\frac{6x}{3x^2 + 2}3x2+26x Answer: 6x3x2+2\frac{6x}{3x^2
+ 2}3x2+26x

Basic Problems

Problem 1: Find f′(x)f'(x)f′(x) if f(x)=x3.f(x) = x^3.f(x)=x3.

 Solution: Power rule: f′(x)=3x2.f'(x) = 3x^2.f′(x)=3x2.
 Answer: 3x23x^23x2

Problem 2: Differentiate f(x)=5x2−7x+4.f(x) = 5x^2 - 7x + 4.f(x)=5x2−7x+4.

 Solution: Term by term: f′(x)=10x−7.f'(x) = 10x - 7.f′(x)=10x−7.
 Answer: 10x−710x - 710x−7

Problem 3: Differentiate f(x)=sin⁡x.f(x) = \sin x.f(x)=sinx.

 Solution: Derivative: f′(x)=cos⁡x.f'(x) = \cos x.f′(x)=cosx.
 Answer: cos⁡x\cos xcosx

Problem 4: Differentiate f(x)=ex.f(x) = e^x.f(x)=ex.

 Solution: Derivative: ex.e^x.ex.
 Answer: exe^xex

Problem 5: Differentiate f(x)=ln⁡x.f(x) = \ln x.f(x)=lnx.

 Solution: Derivative: 1/x.1/x.1/x.
 Answer: 1/x1/x1/x



Intermediate Problems

Problem 6: Differentiate f(x)=x2ex.f(x) = x^2 e^x.f(x)=x2ex.

 Solution: Product rule: (2x)(ex)+(x2)(ex)=(2x+x2)ex.(2x)(e^x) + (x^2)(e^x) = (2x +
x^2)e^x.(2x)(ex)+(x2)(ex)=(2x+x2)ex.
 Answer: (x2+2x)ex(x^2 + 2x)e^x(x2+2x)ex
€14,93
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
DREAMACHIEVES

Maak kennis met de verkoper

Seller avatar
DREAMACHIEVES Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
3 maanden
Aantal volgers
0
Documenten
46
Laatst verkocht
2 dagen geleden
DREAMACHIEVES

On this page, you find all documents, package deals, and flashcards offered by seller Dreamachieves

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen