100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for A First Course in Differential Equations with Modeling Applications 12th Edition by Dennis Zill

Beoordeling
-
Verkocht
-
Pagina's
795
Cijfer
A+
Geüpload op
20-09-2025
Geschreven in
2025/2026

This Solution Manual provides complete, step-by-step solutions for all problems in A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis Zill. It is a valuable companion for students and instructors, offering clear and detailed explanations that strengthen problem-solving skills and ensure full understanding of concepts. Covers all chapters and exercises from the 12th Edition Step-by-step solutions for differential equations and modeling applications Supports self-study, exam preparation, and homework guidance Ideal for students, instructors, and tutors This manual is an excellent resource for mastering differential equations with modeling applications.

Meer zien Lees minder
Instelling
Equations With Modeling
Vak
Equations with Modeling











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Equations with Modeling
Vak
Equations with Modeling

Documentinformatie

Geüpload op
20 september 2025
Aantal pagina's
795
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024, 9780357760192; CHAPTER
#1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ......................................................................................................................................................................... 1
Exercises 1.1 ................................................................................................................................................................................................... 1
Exercises 1.2 ................................................................................................................................................................................................. 14
Exercises 1.3 ................................................................................................................................................................................................. 22
Chapter 1 in Review Solutions .................................................................................................................................................. 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx) or 2
1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y because of
y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear in v.
However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
13. From y = e− x/2
we obtain yj = — 1 e− x/2
. Then 2yj + y = —e− x/2
+ e− x/2 = 0.
2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6
14. From y = — e—20t we obtain dy/dt = 24e−20t , so that
5 5
dy + 20y = 24e−20t 6 6 −20t
+ 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x, so that yjj
— 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j 1/2−
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 —x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is not defined at x
= —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An- other interval is
(π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
1 2
= 2xy2.
yj = 2x
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter- vals are (—∞,
—2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11 — sin x)2 −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another one is (5π/2,
9π/2), and so on.




2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing Wln(2X W — W 1) W — W ln(X W — W 1) W W = W W t Wand Wdifferentiating x

implicitly W we W obtain 4


— = W1 2
2X W— W1 W dt X W— W1 W dt
t
2 1 dX W W – W4 –2 2 4
— = W1
2X W— W1 X W— W1 dt
–2


– W4
dX
= W—(2X W— W1)(X W— W1) W= W(X W— W1)(1 W— W2X).
dt W

Exponentiating W both W sides W of W the W implicit W solution W we W obtain

2X W— W1 W
=
t W X W—
We
W1


2X W — W1 W= WXet W — Wet

(et W — W1) W= W(et W — W2)X
et 1
X W= W .
et W — W2 W
Solving Wet W — W2 W = W 0 Wwe W get Wt W = W ln W2. W Thus, Wthe W solution Wis Wdefined W on W(—∞, Wln W2) W or Won W(ln
W2, W∞). W The W graph W of W the W solution W defined W on W (—∞, Wln W2) W is W dashed, W and W the W graph W of W the

W solution W defined W on W (ln W 2, W ∞) W is W solid.



22. Implicitly W differentiating W the W solution, W we W obtain y

2 W W dy dy 4

—2x W W — W4xy W+ W2y W = W0
dx W dx W 2
—x2 W dy W— W2xy Wdx W+ Wy Wdy W= W0
x
2xy Wdx W+ W(x2 W — Wy)dy W= W0. –4 –2 2 4


Using Wthe Wquadratic W formula W to Wsolve Wy2 W W — W 2x2y W — W 1 W W= W W 0 –2
√W √W
for Wy, Wwe Wget Wy W = 2x2 W W 4x4 W +2W4 W W /2 4W
± x + W1W.
W W= Wx –4
±
√W
Thus, Wtwo Wexplicit Wsolutions Ware Wy1 W W = W x2 x4 W + W1 W and
W
+
√W W
y2 W W = W x2 W W — x4 W + W 1 W. W Both W solutions W are W defined W on W (—∞, W∞).
The W graph W of W y1(x) W is W solid W and W the W graph W of W y2 W W is W dashed.


3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
StudyMuse Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
73
Lid sinds
4 maanden
Aantal volgers
6
Documenten
1637
Laatst verkocht
5 dagen geleden
`Trusted Nursing Resources for top marks

High quality nursing notes , summaries , and exam guides. Accurate , concise , and exam focused to help nursing students pass with confidence.

3,3

12 beoordelingen

5
5
4
0
3
3
2
1
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen