100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Atkins’ Physical Chemistry 12th Edition by Peter Atkins – Complete Solved Problems & Step-by-Step Explanations

Beoordeling
5,0
(1)
Verkocht
1
Pagina's
11
Geüpload op
15-09-2025
Geschreven in
2025/2026

Access the official Solution Manual for Atkins' Physical Chemistry, 12th Edition by Peter Atkins and Julio de Paula — a comprehensive guide with detailed, step-by-step solutions to every chapter and exercise in the textbook. Topics include thermodynamics, quantum chemistry, kinetics, spectroscopy, statistical thermodynamics, electrochemistry, and chemical equilibrium. Ideal for undergraduate and graduate chemistry students, this manual is perfect for homework help, exam prep, and concept mastery in physical chemistry courses.

Meer zien Lees minder
Instelling
Vak

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
15 september 2025
Aantal pagina's
11
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Atkins' Physical Chemistry, 12th Edition,
Peter Atkins, Chapter 1-19




SOLUTION MANUAL

, ❚❛❜❧❡ ♦❢ ❝♦♥t❡♥ts


Pr❡❢❛❝❡ ✈✐✐

✶ ❚❤❡ ♣r♦♣❡rt✐❡s ♦❢ ❣❛s❡s ✶
✶❆ ❚❤❡ ♣❡r❢❡❝t ❣❛s ✶
✶❇ ❚❤❡ ❦✐♥❡t✐❝ ♠♦❞❡❧ ✶✵
✶❈ ❘❡❛❧ ❣❛s❡s ✶✾

✷ ■♥t❡r♥❛❧ ❡♥❡r❣② ✸✺
✷❆ ■♥t❡r♥❛❧ ❡♥❡r❣② ✸✺
✷❇ ❊♥t❤❛❧♣② ✹✵
✷❈ ❚❤❡r♠♦❝❤❡♠✐str② ✹✸
✷❉ ❙t❛t❡ ❢✉♥❝t✐♦♥s ❛♥❞ ❡①❛❝t ❞✐❢❢❡r❡♥t✐❛❧s ✹✾
✷❊ ❆❞✐❛❜❛t✐❝ ❝❤❛♥❣❡s ✺✺

✸ ❚❤❡ s❡❝♦♥❞ ❛♥❞ t❤✐r❞ ❧❛✇s ✻✸
✸❆ ❊♥tr♦♣② ✻✸
✸❇ ❊♥tr♦♣② ❝❤❛♥❣❡s ❛❝❝♦♠♣❛♥②✐♥❣ s♣❡❝✐❢✐❝ ♣r♦❝❡ss❡s ✻✽
✸❈ ❚❤❡ ♠❡❛s✉r❡♠❡♥t ♦❢ ❡♥tr♦♣② ✽✵
✸❉ ❈♦♥❝❡♥tr❛t✐♥❣♦♥t❤❡s②st❡♠ ✽✼
✸❊ ❈♦♠❜✐♥✐♥❣ t❤❡ ❋✐rst ❛♥❞ ❙❡❝♦♥❞ ▲❛✇s ✾✷

✹ P❤②s✐❝❛❧ tr❛♥s❢♦r♠❛t✐♦♥s ♦❢ ♣✉r❡ s✉❜st❛♥❝❡s ✾✾
✹❆ P❤❛s❡❞✐❛❣r❛♠s ♦❢ ♣✉r❡s✉❜st❛♥❝❡s ✾✾
✹❇ ❚❤❡r♠♦❞②♥❛♠✐❝❛s♣❡❝ts ♦❢ ♣❤❛s❡tr❛♥s✐t✐♦♥s ✶✵✶


✺ ❙✐♠♣❧❡♠✐①t✉r❡s ✶✶✺
✺❆ ❚❤❡ t❤❡r♠♦❞②♥❛♠✐❝ ❞❡s❝r✐♣t✐♦♥ ♦❢ ♠✐①t✉r❡s ✶✶✺
✺❇ ❚❤❡♣r♦♣❡rt✐❡s♦❢s♦❧✉t✐♦♥s ✶✷✻
✺❈ P❤❛s❡❞✐❛❣r❛♠s♦❢❜✐♥❛r②s②st❡♠s✿❧✐q✉✐❞s ✶✹✶
✺❉ P❤❛s❡ ❞✐❛❣r❛♠s ♦❢ ❜✐♥❛r② s②st❡♠s✿s♦❧✐❞s ✶✹✽
✺❊ P❤❛s❡❞✐❛❣r❛♠s ♦❢ t❡r♥❛r②s②st❡♠s ✶✺✹
✺❋ ❆❝t✐✈✐t✐❡s ✶✺✽

✻ ❈❤❡♠✐❝❛❧ ❡q✉✐❧✐❜r✐✉♠ ✶✼✶
✻❆ ❚❤❡ ❡q✉✐❧✐❜r✐✉♠ ❝♦♥st❛♥t ✶✼✶

,✐✈ ❚❆❇▲❊ ❖❋ ❈❖◆❚❊◆❚❙


✻❇ ❚❤❡ r❡s♣♦♥s❡ ♦❢ ❡q✉✐❧✐❜r✐❛ t♦ t❤❡ ❝♦♥❞✐t✐♦♥s ✶✼✾
✻❈ ❊❧❡❝tr♦❝❤❡♠✐❝❛❧ ❝❡❧❧s ✶✾✵
✻❉ ❊❧❡❝tr♦❞❡ ♣♦t❡♥t✐❛❧s ✶✾✼

✼ ◗✉❛♥t✉♠ t❤❡♦r② ✷✶✺
✼❆ ❚❤❡ ♦r✐❣✐♥s ♦❢ q✉❛♥t✉♠ ♠❡❝❤❛♥✐❝s ✷✶✺
✼❇ ❲❛✈❡❢✉♥❝t✐♦♥s ✷✷✸
✼❈ ❖♣❡r❛t♦rs ❛♥❞ ♦❜s❡r✈❛❜❧❡s ✷✷✼
✼❉ ❚r❛♥s❧❛t✐♦♥❛❧ ♠♦t✐♦♥ ✷✸✻
✼❊ ❱✐❜r❛t✐♦♥❛❧ ♠♦t✐♦♥ ✷✹✽
✼❋ ❘♦t❛t✐♦♥❛❧ ♠♦t✐♦♥ ✷✺✼

✽ ❆t♦♠✐❝ str✉❝t✉r❡ ❛♥❞ s♣❡❝tr❛ ✷✼✶
✽❆ ❍②❞r♦❣❡♥✐❝ ❆t♦♠s ✷✼✶
✽❇ ▼❛♥②✲❡❧❡❝tr♦♥ ❛t♦♠s ✷✼✼
✽❈ ❆t♦♠✐❝ s♣❡❝tr❛ ✷✼✾

✾ ▼♦❧❡❝✉❧❛r ❙tr✉❝t✉r❡ ✷✽✼
✾❆ ❱❛❧❡♥❝❡✲❜♦♥❞ t❤❡♦r② ✷✽✼
✾❇ ▼♦❧❡❝✉❧❛r ♦r❜✐t❛❧ t❤❡♦r②✿ t❤❡ ❤②❞r♦❣❡♥ ♠♦❧❡❝✉❧❡✲✐♦♥ ✷✾✷
✾❈ ▼♦❧❡❝✉❧❛r ♦r❜✐t❛❧ t❤❡♦r②✿ ❤♦♠♦♥✉❝❧❡❛r ❞✐❛t♦♠✐❝ ♠♦❧❡❝✉❧❡s ✷✾✽
✾❉ ▼♦❧❡❝✉❧❛r ♦r❜✐t❛❧ t❤❡♦r②✿ ❤❡t❡r♦♥✉❝❧❡❛r ❞✐❛t♦♠✐❝ ♠♦❧❡❝✉❧❡s ✸✵✷
✾❊ ▼♦❧❡❝✉❧❛r ♦r❜✐t❛❧ t❤❡♦r②✿ ♣♦❧②❛t♦♠✐❝ ♠♦❧❡❝✉❧❡s ✸✵✼

✶✵ ▼♦❧❡❝✉❧❛r s②♠♠❡tr② ✸✷✶
✶✵❆ ❙❤❛♣❡ ❛♥❞ s②♠♠❡tr② ✸✷✶
✶✵❇ ●r♦✉♣ t❤❡♦r② ✸✷✾
✶✵❈ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ s②♠♠❡tr② ✸✸✼

✶✶ ▼♦❧❡❝✉❧❛r❙♣❡❝tr♦s❝♦♣② ✸✹✾
✶✶❆ ●❡♥❡r❛❧ ❢❡❛t✉r❡s ♦❢ ♠♦❧❡❝✉❧❛r s♣❡❝tr♦s❝♦♣② ✸✹✾
✶✶❇ ❘♦t❛t✐♦♥❛❧ s♣❡❝tr♦s❝♦♣② ✸✺✼
✶✶❈ ❱✐❜r❛t✐♦♥❛❧ s♣❡❝tr♦s❝♦♣② ♦❢ ❞✐❛t♦♠✐❝ ♠♦❧❡❝✉❧❡s ✸✼✶
✶✶❉ ❱✐❜r❛t✐♦♥❛❧ s♣❡❝tr♦s❝♦♣② ♦❢ ♣♦❧②❛t♦♠✐❝ ♠♦❧❡❝✉❧❡s ✸✽✹
✶✶❊ ❙②♠♠❡tr② ❛♥❛❧②s✐s ♦❢ ✈✐❜r❛t✐♦♥❛❧ s♣❡❝tr♦s❝♦♣② ✸✽✺
✶✶❋ ❊❧❡❝tr♦♥✐❝ s♣❡❝tr❛ ✸✽✽
✶✶● ❉❡❝❛② ♦❢ ❡①❝✐t❡❞ st❛t❡s ✸✾✽

, ❚❆❇▲❊ ❖❋ ❈❖◆❚❊◆❚❙ ✈

✶✷ ▼❛❣♥❡t✐❝ r❡s♦♥❛♥❝❡ ✹✵✾
✶✷❆ ●❡♥❡r❛❧ ♣r✐♥❝✐♣❧❡s ✹✵✾
✶✷❇ ❋❡❛t✉r❡s ♦❢ ◆▼❘ s♣❡❝tr❛ ✹✶✷
✶✷❈ P✉❧s❡t❡❝❤♥✐q✉❡s ✐♥ ◆▼❘ ✹✷✶
✶✷❉ ❊❧❡❝tr♦♥ ♣❛r❛♠❛❣♥❡t✐❝ r❡s♦♥❛♥❝❡ ✹✷✾


✶✸ ❙t❛t✐st✐❝❛❧ t❤❡r♠♦❞②♥❛♠✐❝s ✹✸✺
✶✸❆ ❚❤❡ ❇♦❧t③♠❛♥♥ ❞✐str✐❜✉t✐♦♥ ✹✸✺
✶✸❇ P❛rt✐t✐♦♥ ❢✉♥❝t✐♦♥s ✹✸✾
✶✸❈ ▼♦❧❡❝✉❧❛r❡♥❡r❣✐❡s ✹✹✾
✶✸❉ ❚❤❡ ❝❛♥♦♥✐❝❛❧ ❡♥s❡♠❜❧❡ ✹✺✻
✶✸❊ ❚❤❡ ✐♥t❡r♥❛❧ ❡♥❡r❣② ❛♥❞ ❡♥tr♦♣② ✹✺✼
✶✸❋ ❉❡r✐✈❡❞ ❢✉♥❝t✐♦♥s ✹✼✸


✶✹ ▼♦❧❡❝✉❧❛r■♥t❡r❛❝t✐♦♥s ✹✽✺
✶✹❆ ❊❧❡❝tr✐❝ ♣r♦♣❡rt✐❡s ♦❢ ♠♦❧❡❝✉❧❡s ✹✽✺
✶✹❇ ■♥t❡r❛❝t✐♦♥s❜❡t✇❡❡♥♠♦❧❡❝✉❧❡s ✹✾✻
✶✹❈ ▲✐q✉✐❞s ✺✵✹
✶✹❉ ▼❛❝r♦♠♦❧❡❝✉❧❡s ✺✵✻
✶✹❊ ❙❡❧❢✲❛ss❡♠❜❧② ✺✶✼


✶✺ ❙♦❧✐❞s ✺✷✸
✶✺❆ ❈r②st❛❧ str✉❝t✉r❡ ✺✷✸
✶✺❇ ❉✐❢❢r❛❝t✐♦♥t❡❝❤♥✐q✉❡s ✺✷✻
✶✺❈ ❇♦♥❞✐♥❣ ✐♥s♦❧✐❞s ✺✸✹
✶✺❉❚❤❡♠❡❝❤❛♥✐❝❛❧♣r♦♣❡rt✐❡s♦❢s♦❧✐❞s ✺✸✾
✶✺❊ ❚❤❡❡❧❡❝tr✐❝❛❧♣r♦♣❡rt✐❡s♦❢s♦❧✐❞s ✺✹✶
✶✺❋ ❚❤❡ ♠❛❣♥❡t✐❝ ♣r♦♣❡rt✐❡s ♦❢s♦❧✐❞s ✺✹✸
✶✺● ❚❤❡♦♣t✐❝❛❧♣r♦♣❡rt✐❡s♦❢s♦❧✐❞s ✺✹✻


✶✻ ▼♦❧❡❝✉❧❡s ✐♥ ♠♦t✐♦♥ ✺✺✶
✶✻❆ ❚r❛♥s♣♦rt ♣r♦♣❡rt✐❡s ♦❢❛ ♣❡r❢❡❝t❣❛s ✺✺✶
✶✻❇ ▼♦t✐♦♥✐♥❧✐q✉✐❞s ✺✺✽
✶✻❈ ❉✐❢❢✉s✐♦♥ ✺✻✸


✶✼ ❈❤❡♠✐❝❛❧ ❦✐♥❡t✐❝s ✺✼✸
✶✼❆ ❚❤❡ r❛t❡s ♦❢ ❝❤❡♠✐❝❛❧ r❡❛❝t✐♦♥s ✺✼✸

,✈✐ ❚❆❇▲❊ ❖❋ ❈❖◆❚❊◆❚❙


✶✼❇ ■♥t❡❣r❛t❡❞ r❛t❡ ❧❛✇s ✺✼✾
✶✼❈ ❘❡❛❝t✐♦♥s ❛♣♣r♦❛❝❤✐♥❣ ❡q✉✐❧✐❜r✐✉♠ ✺✾✸
✶✼❉ ❚❤❡ ❆rr❤❡♥✐✉s ❡q✉❛t✐♦♥ ✺✾✼
✶✼❊ ❘❡❛❝t✐♦♥♠❡❝❤❛♥✐s♠s ✻✵✶
✶✼❋ ❊①❛♠♣❧❡s ♦❢ r❡❛❝t✐♦♥♠❡❝❤❛♥✐s♠s ✻✵✼
✶✼● P❤♦t♦❝❤❡♠✐str② ✻✶✹

✶✽ ❘❡❛❝t✐♦♥❞②♥❛♠✐❝s ✻✷✶
✶✽❆ ❈♦❧❧✐s✐♦♥ t❤❡♦r② ✻✷✶
✶✽❇ ❉✐❢❢✉s✐♦♥✲❝♦♥tr♦❧❧❡❞r❡❛❝t✐♦♥s ✻✷✻
✶✽❈❚r❛♥s✐t✐♦♥✲st❛t❡t❤❡♦r② ✻✷✾
✶✽❉ ❚❤❡ ❞②♥❛♠✐❝s ♦❢ ♠♦❧❡❝✉❧❛r ❝♦❧❧✐s✐♦♥s ✻✸✾
✶✽❊ ❊❧❡❝tr♦♥ tr❛♥s❢❡r ✐♥ ❤♦♠♦❣❡♥❡♦✉s s②st❡♠s ✻✹✵

✶✾ Pr♦❝❡ss❡s❛ts♦❧✐❞s✉r❢❛❝❡s ✻✹✼
✶✾❆ ❆♥ ✐♥tr♦❞✉❝t✐♦♥ t♦ s♦❧✐❞s✉r❢❛❝❡s ✻✹✼
✶✾❇ ❆❞s♦r♣t✐♦♥❛♥❞❞❡s♦r♣t✐♦♥ ✻✺✵
✶✾❈ ❍❡t❡r♦❣❡♥❡♦✉s ❝❛t❛❧②s✐s ✻✻✵
✶✾❉ Pr♦❝❡ss❡s ❛t ❡❧❡❝tr♦❞❡s ✻✻✷

, ✶ ❚❤❡♣r♦♣❡rt✐❡s♦❢❣❛s❡s


✶❆ ❚❤❡ ♣❡r❢❡❝t ❣❛s
❆♥s✇❡rs t♦ ❞✐s❝✉ss✐♦♥ q✉❡st✐♦♥s

DÔA.ò e partial pressure of gas J, pJ , in a mixture of gases is given by [ÔA.â–À], pJ =
xJ p, where p is the total pressure and xJ is the mole fraction of J.
If the gases are perfect, the partial pressure is also the pressure the
gas would exert if it occupied on its own the same container as the
mixture at the same temperature. is leads to Dalton’s law, which is
that the pressure of a mixture of gases is the sum of the pressures that
each one would exert if it occupied the container alone.
Dalton’s law is a limiting law because it holds exactly only in the limit that
there are no interactions between the molecules, which for real gases
will be in the limit of zero pressure.

❙♦❧✉t✐♦♥s t♦ ❡①❡r❝✐s❡s
EÔA.Ô(b) From inside the front cover the conversion between pressure units is: Ô atm

101.325 kPa ≡ Þâý Torr.
(i) A pressure of òò. kPa is converted to atm as follows
1 atm
22.5 kPa × = ý.òòò atm
101.325 kPa
(ii) A pressure of ÞÞý Torr is converted to Pa as follows
1 atm
101.325 kPa
= 103 kPa =1.03 × 10 Pa
770 Torr × 5
760 Torr × 1 atm

EÔA.ò(b) e perfect gas law [ÔA.¥–—], pV = nRT , is rearranged to give the
pressure, p = nRT ~V . e amount n is found by dividing the mass by the
molar mass of Ar, çÀ.À g mol−1.
n
³¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ·¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹µ −2
3 −1 −1

(25 g) ‰8.3145 × 10 dm bar K mol Ž × (303.15 K)
p = (39.95 g mol−1
1.5 dm3
)
= 10.4 bar
So no , the sample would not exert a pressure of ò.ý Ôý.¥ bar if it were
bar, but a perfect gas.

,✷ ✶❚❍❊P❘❖P❊❘❚■❊❙❖❋●❆❙❊❙


EÔA.ç(b) Because the temperature is constant (isothermal) Boyle’s law applies, pV =
const. erefore the product pV is the same for the initial and final states

pf Vf = pi Vi hence pi = pf Vf~Vi
e initial volume is Ô.—ý dm3 greater than the final volume so Vi = 2.14+1.80 =
3.94 dm3 .
Vf 2.14
pi = × pf = × (1.97 bar) = 1.07 bar
Vi dm3
3.94 dm
3


(i) e in initial pressure is Ô.ýÞ bar
(ii) Because Ô atm is equivalent to Ô.ýÔçò bar and also to Þâý Torr,
the initial pressure expressed in Torr is
1 atm 760 Torr
× × 1.07 bar = —ýç Torr
1.01325 bar 1 atm

EÔA.¥(b) If the gas is assumed to be perfect, the equation of state is [ÔA.¥–—], pV =
nRT . In this case the volume and amount (in moles) of the gas are
constant, so it follows that the pressure is proportional to the
temperature: p ∝ T . e ratio of the final and initial pressures is therefore
equal to the ratio of the temperatures: pf ~ pi = Tf ~Ti. Solving for the
final pressure pf (remember to use absolute temperatures) gives
Tf
pf = × pi
Ti
(11 + 273.15) K 125 kPa =
= ×( ) Ôòý kPa
(23 + 273.15) K


EÔA. (b) e perfect gas law pV = nRT is rearranged to give n = pV ~ RT.

pV
n = RT
(1.00 × 1.01325 × 105 Pa) × (4.00 × 103 m3 ) 1.66... × 105 mol
= =
(8.3145 J K−1 mol− ) × ([20 + 273.15] K)
1


where 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−2 have been used.
−1
e molar mass of CH4 is 12.01 + 4 × 1.0079 = 16.0416 g , so the mass of
mol −1
CH4 is (1.66... ×105 mol)×(16.0416 g ) = 2.67 × 106 g or 2.67 × 103 kg.
mol

EÔA.â(b) e vapour is assumed to be a perfect gas, so the gas law pV = nRT
applies. e task is to use this expression to relate the measured
mass density to the molar mass.
First, the amount n is expressed as the mass m divided by the molar
mass M to give pV = (m~ M)RT ; division of both sides by V gives p =
(m~ V )(RT~ M).

, ❙❖▲❯❚■❖◆❙ ▼❆◆❯❆▲ ❚❖ ❆❈❈❖▼P❆◆❨ ❆❚❑■◆❙✬ P❍❨❙■❈❆▲ ❈❍❊▼■❙❚❘❨ ✸

e quantity (m~ V ) is the mass density ρ, so p = ρRT ~ M, which
rearranges to M = ρRT ~ p; this is the required relationship between M
and the density.
−3 −1 −1
ρRT (0.6388 kg m ) × (8.3145 J K mol ) × ([100 + 273.15] K)
M= =
p 16.0 × 103 Pa
= 0.123... kg
mol−1

where 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−2 have been used. e
molar mass of P is 30.97 g mol−1 , so the number of P atoms in the
−1 −1
molecules comprising
the vapour is (0.123... × 103 g mol )~(30.97 g mol ) = 4.00. e result is
expected to be an integer, so the formula is likely to be P4 .

EÔA.Þ(b) e vapour is assumed to be a perfect gas, so the gas law pV = nRT
applies; the task is to use this expression to relate the measured data
to the mass m. is is done by expressing the amount n as m~ M,
where M is the the molar mass. With this substitution it follows that m =
MPV ~ RT.
e partial pressure of water vapour is 0.53 times the saturated vapour pressure
M pV
m = RT
−1
(18.0158 g mol ) × (0.53 × 0.0281 × 105 Pa) × (250 m3 )
=
(8.3145 J K−1 mol− ) × ([23 + 273.15] K)
1

= 2.7 × 103 g = ò.Þ kg

EÔA.—(b) Once the total amount and the total pressure ptot are known, the
volume is found using the perfect gas law. e total amount in moles of
the mixture of gases is
ntot = nCH4 + nAr + nNe = 4m CH + mAr + mNe
MCH4 MAr MNe
0.320 g + 0.175 g 0.225 g
= −1 −1
+
(12.01 + 4 × 1.0079) g mol 39.95 g mol 20.18 g mol−1
= 3.54... × 10−2 mol
e mole fraction of neon is
nN 0.225 g 1
xNe = e = −1× 3.54... × 10−2 mol
= 0.314...
20.18 g mol
nto
t

Because pNe = xNe × ptot it follow that
pN 8.87 kPa ò—.ò kPa
ptot = e = =
0.314...
xN
e
e volume is calculated using the perfect gas equation with the known
total pressure and total amount
−2 −1 −1
nRT (3.54... × 10 mol) × (8.3145 J K mol ) × (300 K)
V= =
p 28.2 × 103 Pa
= 3.14 × 10−3 m3 ç.Ô¥ dm3
=

,✹ ✶❚❍❊P❘❖P❊❘❚■❊❙❖❋●❆❙❊❙


EÔA.À(b) e vapour is assumed to be a perfect gas, so the gas law pV = nRT applies.
e task is to use this expression to relate the measured pressure and
volume of a known mass of gas to the molar mass.
e amount n is expressed as the mass m divided by the molar
mass M to give pV = (m~ M)RT ; this rearranges to M = mRT~ pV
which is the required relationship. e pressure in Torr is converted to Pa
by noting that Þâý Torr is equivalent to Ô atm.

mRT
M = pV
−6 −1 −1
(33.5 × 10 kg) × (8.3145 J K mol ) × (298 K)
=
(152 Torr~760 Torr) × (1.01325 × 105 Pa) × (250 × 10−6 m3 )
= ý.ýÔ⥠kg
mol−1

e relationships 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−2 have
been used; note the conversion of the volume to m3 .

EÔA.Ôý(b) e idea here is that the volume will go to zero at absolute zero. e data
given are the slope of the volume/temperature plot, together with one
fixed point, so the equation of the straight line can be found, and then
the required intercept.
e equation of the line is
3 ○ 3
(V ~dm ) = (0.0741) × (θ~ C) + (c~dm )
e fixed point given is that the volume at θ = 0 ○C is òý.ýý dm3 , so the constant
c is equal to this volume
3 ○
(V ~dm ) = (0.0741)

× (θ~ C) + 20.00
−20.00)~(0.0741) = −270, hence
is is solved for V = 0 to give (θ~ C) = (
θ = −270 ○ C . is is the estimate of absolute zero.

EÔA.ÔÔ(b) (i) e mole fractions
are 1.5 mol
nH2 3
8
5
8
xH2 = n + n = = xN2 = 1 − xH2 =
H2 N2 1.5 mol + 2.5 mol
(ii) e partial pressures are given by pi = xi ptot. e total pressure is
given by the perfect gas law: ptot = ntot RT~ V
−1 −1 ) × (273.15 K)
pH2 = xH2 ptot = 3 × (4.0 mol) × (8.3145 J K mol
8 22.4 × 10−3 m3
5
= 1.5 × 10 Pa
5 (4.0 mol) × (8.3145 J K−1 mol−1 ) × (273.15 K)
pN2 = xN2 ptot = ×
8 22.4 × 10−3 m3
5
= 2.5 × 10
Pa
Expressed in atmospheres these are Ô. atm and ò. atm, respectively.

, THOSE WERE PREVIEW PAGES

TO DOWNLOAD THE FULL PDF

CLICK ON THE L.I.N.K

ON THE NEXT PAGE

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
5 dagen geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
elevation Central Washington University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
44
Lid sinds
10 maanden
Aantal volgers
0
Documenten
491
Laatst verkocht
1 week geleden

2,9

16 beoordelingen

5
6
4
0
3
3
2
1
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen