ss ss ss
SOLUTION MANUAL
ss
,Problems ssand ssSolutions ssSection ss1.1 ss(1.1 ssthrough ss1.19)
1.1 The ssspring ssof ssFigure ss1.2 ssis sssuccessively ssloaded sswith ssmass ssand ssthe sscorresponding
ss(static) ssdisplacement ssis ssrecorded ssbelow. s s Plot ssthe ssdata ssand sscalculate ssthe
ssspring's ss stiffness. s s Note ssthat ssthe ssdata ss contain sssome ss error. s s Also sscalculate ssthe
ssstandard ssdeviation.
m(kg) 10 11 12 13 14 15 16
x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82
Solution:
Free-body ssdiagram: From ssthe ssfree-body ssdiagram ssand ssstatic
ssequilibrium:
kx
kx ss= ss mg s s ss (g ss= ss 9.81ms/sss2)
k k s s = ss mgs/ ssx
ki
m ss= ss = ss86.164
n
mg
20
The sssample ssstandard ssdeviation ssin
sscomputed ssstiffness ssis:
n
m 15 (k i s s − 2
)
s s i=1
= ss 0.164
ss=
n ss−s1
10
0 1 2
x
Plot ssof ssmass ssin sskg ssversus ssdisplacement ssin ssm
Computation ssof ssslope ssfrom ssmg/x
m(kg) x(m) k(N/m)
10 1.14 86.05
11 1.25 86.33
12 1.37 85.93
13 1.48 86.17
14 1.59 86.38
15 1.71 86.05
16 1.82 86.24
@
@sseeisism
micicisisoolalatitoionn
,1.2 Derive ssthe sssolution ssof ss m˙x˙ ss+ sskx ss= ss0 s s and ssplot ssthe ssresult ssfor ssat ssleast sstwo ssperiods ssfor ssthe sscase
with ssn ss= ss2 ssrad/s, ssx0 ss= ss1 ssmm, 5 mm/s.
ssand ssv0 ss=
Solution:
Given:
m˙x˙+ sskx ss= (1)
ss0
Assume: s s x(t) ss= ssaert ss. x˙ s s = and ˙x˙ ss= ssars2ert ss. s s Substitute ssinto ssequation ss(1) ssto
rt
s s Then: ssget: ss are
mar2ert s s + sskaert s s = ss0
mr2 ss + ssk ss = ss0
k
r ss = ss i
m
Thus ssthere ssare sstwo sssolutions:
k k
−
ss
x1 ss = ce
ss 1 i
, s s and s s x = ce
2 ss ss iss t2
k
where ss n = ss2 s s rad/s
ss =
m
The sssum ssof ssx1 ssand ssx2 ssis ssalso ssa sssolution ssso ssthat ssthe sstotal sssolution ssis:
x ss= s s x s s + ssx = ssc s s e2it s s
+ ssc ss e−2it
1 2 1 2
Substitute ssinitial ssconditions: ssx0 ss= ss1 ssmm, ssv0 5ss= mm/s
x(s 0)s= ssc1 ss+ ssc2 s s = ssx0 s s = ss1ss ssc2 ss = ss1s− ssc1, s s and s s v ( 0 )s= ssx˙(0)s= 5 mm/s
ss2ic1 s s − ss2ic2 s s = ssv0 s s =
ss−2c1 ss+ ss2c2 s s = 5 ssi. s s Combining ssthe sstwo ssunderlined ssexpressions ss(2 sseqs ssin ss2 ssunkowns):
1 1 ss
−2c1 + ss2 ss− = 5 ssi ss = s s 5 i, s s and = s s +5 i
s s c2 2 4
− 4
ss
ss2c1 ssc1
2
Therefore ssthe sssolution ssis:
ss1 ss1
5
s s
5 −2it
x ss= ss ss i 2it + ss ss i s s e
ss+
2 s s e 4
− 4 ss2
ss
Using ssthe ssEuler ssformula ssto ssevaluate ssthe ssexponential ssterms ssyields:
ss1 ss1
5 5
@
@sseeisism
micicisisoolalatitoionn
, x ss= ss ss − i
s s (cos2ts + ssissins2ts)+
ss
s
ss i s s (cos2t
s − ssissins2ts)
ss
2 ss ss ss+ 4
4 ss2
3 ss
ssx(t)s ss= sscoss2t ss+ 5 sins2t ss = sin(2t ss+ ss0.7297)
2 2
@
@sseeisism
micicisisoolalatitoionn