100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting verklarende statistiek (17/20)

Beoordeling
5,0
(2)
Verkocht
24
Pagina's
133
Geüpload op
14-12-2020
Geschreven in
2022/2023

Dit is een samenvatting van de lessen van verklarende statistiek gegeven door Heidi Arnouts (tew jaar 2, HI jaar 1). Het is een samenvatting van de lessen en het boek. Voorbeelden uit het handboek zijn uitgewerkt in de samenvatting. Bij vragen mag je altijd een berichtje sturen. Veel succes!

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
14 december 2020
Aantal pagina's
133
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Verklarende statistiek

DEEL I: Schatters en toetsen
Hoofdstuk 1: Het schatten van populatieparameters
1.1 Inleiding: schatters versus schatting
o De populatieparameters µ, σ²,  en  worden in de praktijk zelden berekend
 Wel proberen te schatten
 Schatting gebaseerd op aantal metingen of waarnemingen x1, x2, …, xn die je uitvoert
- M.a.w. de steekproefgegevens die je verzamelt
o De schatting voor de onbekende  zal een functie zijn van de verzamelde steekproefwaarden
n
xi
x1, x2, …, xn, bijvoorbeeld het steekproefgemiddelde x = ∑
i=1 n
 Elke onderzoeker krijgt ander steekproefgemiddelde of een andere schatting
- Reden: aantal uitkomsten in het kantoor in een bepaald tijdsinterval een
kansvariabele is (weergeven door hoofdletters X 1, X2, …, Xn)
o Feit dat elke onderzoeker andere schatting voor  verkrijgt, kunnen we expliciteren door een
hoofdletter te gebruiken voor steekproefgemiddelde X
 Steekproefgemiddelde wordt zo geïnterpreteerd als kansvariabele
- Men spreekt van een schatter (geen schatting)
o Besluit: een schatting is altijd een reëel getal terwijl een schatter een kansvariabele is
waarvan de waarde nog niet bekend is
o Onderzoeker wil schatting verkrijgen die gemiddeld gelijk is aan de onbekende parameter en
liefst garandeert dicht bij de onbekende parameter ligt
 Statistici vertalen vereiste naar: ‘schatter moet onvertekend zijn’ en ‘schatter moet
een kleine variantie hebben’

1.2 Het schatten van een gemiddelde
o Eisen van een goede schatter kunnen best geïllustreerd worden aan de hand van 2
simulatiestudies:
 1ste studie: normaal verdeelde populatie bestuderen
 2de studie: populatie met exponentiële kansdichtheid bestuderen

1.2.1. Gemiddelde van een normaal verdeelde populatie
o Stel: normaal verdeelde populatie
 µ = 3000
 σ = 100
 n = 1000 (studenten)
o Elk van de studenten verricht 5 metingen
 Optie 1: µ schatten door steekproefgemiddelde te berekenen
- Zo verkrijg je 1000 steekproefgemiddeldes
 Optie 2: µ schatten door mediaan te berekenen
- Voor normale verdelen: mediaan = µ = verwachte waarde



1

, o Steekproefgemiddelde en mediaan zijn zuivere of onvertekende schatters van het
gemiddelde van normaal verdeelde populatie (2 uitkomsten zijn ongeveer gelijk aan 3000)
o Spreidingsbreedte, interkwartielbreedte, standaarddeviatie en variantie zijn kleiner dan 1000
steekproefmedianen -> steekproefgemiddelde is betrouwbaardere schatter dan mediaan
 Onderzoekers kiezen sneller voor steekproefgemiddelde
- = Efficiëntere of preciezere schatter

1.2.2. Gemiddelde van een exponentieel verdeelde populatie
o Stel een exponentieel verdeelde populatie
  = 1/100
 “Onbekende” populatiegemiddelde µ = 1/ = 100
o Elk van de studenten verricht 5 metingen
 Optie 1: steekproefgemiddelde berekenen
 Optie 2: medianen berekenen
- Gemiddeld verre van gelijk aan µ -> slechte schatter
 Geen zuivere, maar vertekende schatter van populatiegemiddelde

1.3 Criteria voor schatters
1.3.1. Een onvertekende of zuivere schatter
o Ideale schatter die gegarandeerd aangeeft wat de precieze waarde van een onbekende
populatieparameter is, bestaat niet
 Sommige schatters (zuiver of onvertekend) zijn gemiddeld gezien gelijk aan de
onbekende populatieparameters, terwijl andere systematisch een
populatieparameter onder- of overschatten
o Definitie: schatter  voor een populatieparameter  is zuiver of onvertekend indien E() = 
o De vertekening van een schatter is het verschil V() = |E()-|
 Zuivere schatter heeft een vertekening van 0
- Schatting is precies gelijk aan gezochte populatieparameters
 Griekse letters omdat het gaat over populatieparameters
o In deze cursus aandacht geven aan 3 specifieke schatters:
 Steekproefgemiddelde X, steekproefproportie P en steekproefvariantie S²
- Symbolen i.p.v. µ,  en σ²
o Steekproefgemiddelde is een overtekende of zuivere schatter van populatiegemiddelde
n
 Geldt voor alle mogelijke lineaire functies Y = ∑ ai X i van steekproefwaarnemingen
i=1
n
waarbij ∑ ai= 1
i=1
n
1 1 1 1 1
 Als ai = 1/n dan X = ∑ X i= (X1, X2, …,Xn) = X1 + X2 +…+ Xn
n i=1 n n n n
o Kan aangetoond worden dat steekproefgemiddelde van alle mogelijke lineaire functies van
X1, X2,…,Xn de kleinste variantie heeft
 M.a.w. steekproefgemiddelde zal onderzoeker schatting opleveren die dichter bij het
populatiegemiddelde ligt dan elke andere lineaire functie Y van X 1, X2,…, Xn
n
1
o Steekproefvariantie S² = ∑ (X −X ) ²
n−1 i=1 i
 Onvertekende schatter van een populatievariantie σ²
 Stelling geeft aan waarom er gedeeld door n-1 en niet door n gedaan wordt

2

, o !! Steekproefstandaarddeviatie S is vertekende schatter van populatiestandaarddeviatie σ
o Steekproefproportie P is een speciaal geval van steekproefgemiddelde
 Verwachte waarde is gelijk aan populatieproportie 
 P is een onvertekende schatter

1.3.2. Precisie of efficiëntie van een schatter
o Schatter moet zo betrouwbaar mogelijk zijn en moeten zo dicht mogelijk bij onbekende
populatieparameter liggen
 = Schatter moet kleine variantie of standaarddeviatie hebben
 = Efficiënte of precieze schatter
o Als 1 en 2 twee onvertekende of zuivere schatters zijn voor eenzelfde onbekende
populatieparameter , dan wordt de relatieve efficiëntie van 2 ten opzichte van 1 berekend
als var(1)/var(2)
o Keuze tussen schatter die onvertekend is maar grote variantie bezit of schatter die vertekend
is met kleine variantie is moeilijk
 Keuze voor schatter die kleinste gemiddelde gekwadrateerde afwijking GAA() bezit
o Definitie: de gemiddelde gekwadrateerde afwijking van een schatter  is de som van zijn
variantie en het kwadraat van de vertekening: GAA() = var() + [V()]²
o Wenselijk dat nauwkeurigheid of precisie van de schatter toeneemt als het aantal
waarnemingen stijgt -> meer waarnemingen = meer informatie = betere schatting

1.4 Methoden voor het berekenen van schatters
o 3 methoden die vallen buiten bestek van de cursus:
 Methode van de momenten
 Methode van de kleinste kwadraten
 Methode van de grootste aannemelijkheid

1.5 Het steekproefgemiddelde
1.5.1. Verwachte waarde en variantie
o Als steekproefgemiddelde als schatter beschouwd wordt en dus als een kansvariabele
aangezien wordt, dan kunnen de verwachte waarde, variantie en kansdichtheid bepaald w
n
1
o Steekproefgemiddelde wordt genoteerd als X = ∑X
n i=1 i
 Beschouwen als kansvariabele/schatter zolang er geen data is dus zolang X 1, X2,…, Xn
niet bekend zijn
 Als de gegevens bekend zijn gebruiken we kleine letters x 1, x2,…, xn
o Voor steekproefgemiddelde dat we berekenen o.b.v. waargenomen waarden x 1, x2,…, xn
n
1
gebruiken we ook een kleine letter: x = ∑ x i
n i=1
o Stelling: voor een lukrake steekproef uit een populatie met verwachte waarde µ geldt dat
E(X) = µ
n n
1 1 1 nµ
o Bewijs: E(X) = E( ∑ X i) = ∑ E (X i ) = (µ + µ + µ +…+ µ) = =µ
n i=1 n i=1 n n
o Stelling geeft aan dat voordat steekproefgegevens verzameld worden, de verwachte waarde
van steekproefgemiddelde gelijk is aan populatiegemiddelde
 M.a.w. stelling toont aan dat steekproefgemiddelde de meest onvertekende/zuivere
schatter is van het populatiegemiddelde


3

, o Standaarddeviatie en variantie van X bestuderen om een idee van de grootte van mogelijke
afwijkingen te krijgen
o Stelling: voor een lukrake steekproef van n waarnemingen uit een populatie met variantie σ²
2 σ² σ
geldt dat σ X = var(X) = en σX =
n √n




4
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
7 maanden geleden

5 jaar geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TEWaanUA Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
719
Lid sinds
6 jaar
Aantal volgers
384
Documenten
3
Laatst verkocht
1 week geleden

4,1

70 beoordelingen

5
29
4
24
3
13
2
2
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen