100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Methods, Measurement & Statistics lectures

Beoordeling
-
Verkocht
2
Pagina's
62
Geüpload op
10-09-2025
Geschreven in
2024/2025

Deze samenvatting bevat aantekeningen van alle lectures gegeven tijdens het vak Methods, Measurement & Statistics in de half jaar durende Human Resource Studies Pre-Master ter voorbereiding op de Master Human Resource Studies aan Tilburg University.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 september 2025
Aantal pagina's
62
Geschreven in
2024/2025
Type
College aantekeningen
Docent(en)
-
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Methods, Measurement and Statistics
Lecture 1 Statistics and Measurement
Methods
Design a study that can answer your research question.

Measurement
How to measure social and psychological constructs.

Statistics
How to describe and analyze your data and test hypotheses.

Statistics is used to:
- Describe/summarize data (descriptive statistics)
Reduce data to understandable pieces of information
- Drawing inferences about populations (inferential statistics)
In science we often want to draw conclusions about populations
- Studying complex multivariate relationships (statistical modeling)

Measurement levels
Quantitative data is expressible in numbers often collecting it using questionnaires.

Basic distinction between four types of data (measurement levels):
- Nominal
Numbers express different unordered categories or groups (eye colour)
Each category gets a number, but the number doesn’t have a meaning and is just for
reference.
Example: marital status:
1 single
2 married
3 relationship but not married
4 complicated not specified otherwise

Categories must be exhaustive (all possibilities should be covered) and mutually exclusive
(every case fits into one category and one category only). You want to prevent people not
being able to answer the question and remove options that can be answered on top of other
options that they can choose.
- Ordinal
Numbers express different ordered categories (less/more)

Example: Smoking intensity
1 never
2 at least 1 cigarette per month
3 at least 1 per day
4 five or more per day

,There is a clear order and increase in the options, there is still a category and no exact
amount mentioned and you are forced to respond with one of these categories.
Ordinal variables express more or less of a quantity but the difference between pairs of
categories is not necessarily the same in quantity.
There should be a logical order. See below, can be interpreted in different ways.
Example: Not logical:
1 Never
2 Occasionally
3 Daily
4 Often
- Interval
Numbers express differences in quantity using a common unit with equal intervals between
the neighboring data points, but no true zero point (true interpretation of a zero).

Example: IQ test score (Temperature is also an example, 0 degrees doesn’t mean that there is
no temperature, it just means that the water starts to freeze)
The difference between 70 and 80 IQ points is comparable to a difference between 100 and
110. Both span a difference of 10 units.
The IQ test, doesn’t have a true meaning of a 0. There is no absence of it.
- Ratio
Numbers express differences in quantity on a common unit and have a natural zero point.

Example: length, weight or income
A length, weight or income of 0 can be meaningfully interpreted.
This allows for relative comparisons.
For example 6 degrees is not twice as hot as 3 degrees (because zero degrees isn’t the
starting point) but someone can be twice as long.

They differ in how refined or exact the measurement is:
- Nominal lowest level and ratio highest
- Measuring at a lower level is often easer but less informative.

Interval and ratio level data are scale data. All variables that are not nominal or ordinal are
treated as scale-level variables.
Ratio is more precise because it can difference more things and more specific properties.

Measurement level is a property of the measurement values, it is not an intrinsic property of
the thing you are measuring.

Example: you cannot say that intelligence has interval level
Intelligence can be measured at different levels depending on the measurement instrument.
Nominal: variable indicating someone’s intelligence type (musical/ mathematical)
Ordinal: variable indicating the highest education completed (e.g. primary school)
Interval: score resulting from an IQ test
Ratio: skull circumference in centimeters (used to do this in the past)

,Measurement levels determine the kind of statistics and statistical analyses you can use
meaningfully.

Data inspection
Every analysis starts with data inspection: the goal is to get a clear picture of the data by
examining one variable at the time (univariate), or pairs of variables (bivariate).

In general we want to inspect:
- Central tendency: what are the most common values?
- Variability: how large are the differences between the subjects? Are there extreme
values in the sample? (e.g. an age of 100)
- Bivariate Association: for each pair of variables, do they associate/covary/correlate
(do low/large values on variable A go together with low/large values on variable B)

Accomplishing this goal:
- Visual data inspection (graphs)
- Numerical data inspection (statistics)
Which statistics and graphs are most appropriate depends on the measurement level.

Visual data inspection (three common graph types)
- Bar charts (nominal and ordinal data)




- Histogram (scale data)
In a histogram not every category has a bar such as bar charts (e.g. some may be 0)




Normal distribution: symmetrical distribution, the farther you go from the center to
the edges the lower the distribution is and gradually lowers. For example: IQ score,
birthweight, length.
- Scatterplot

, Scale data and 2 variables at the same time
Important information that is not shown in the graph, can lead to misleading figures
and incorrect conclusions (such as not showing age in a graph about length and
reading ability)

Numerical data inspection
Three common statistical approaches
1. Frequency tables
how often do particular scores occur?
1 variable
Valid percent = frequency/ (total sample size (N) – missings)




- Crosstable: 2 variables




2. Central tendencies
The center in the scores of your data
- Mode
The score that is observed most frequently.
Example: {3,4,5,5,5} -> mode is 5
For nominal, ordinal or scale data

- Median
The score that separates the higher half of data from the lower half of data, the exact
middle score.
Example 1: N= unequal {5,6,7,8,9} -> median is 7
Example 2: N=equal {5,6,8,9} median -> 7
Arithmetic mean of the two middle values 6 and 8 = 7
For ordinal or scale data that are not normally distributed

- Mean
The average score of all the total scores.


X = the score that you want to calculate the mean for
N = number of scores that you have (how many times is there a score)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Monique01 Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
13
Lid sinds
4 jaar
Aantal volgers
0
Documenten
6
Laatst verkocht
4 dagen geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen