100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Complete A-Level Maths Revision Notes For Edexcel: C3 (Core)

Beoordeling
-
Verkocht
1
Pagina's
20
Geüpload op
09-06-2014
Geschreven in
2007/2008

I am a former student of the University of Cambridge, specialising in mathematics, physics and chemistry. I am studying for a PhD in physics, and tutor maths and all sciences to A-Level. These notes are relevant for Edexcel, AQA and OCR board exams.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
9 juni 2014
Aantal pagina's
20
Geschreven in
2007/2008
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

C3 Revision Notes

Rational Expressions: Multiplication And Division
E.g.1. 9x2 - 4 / 6x2 - 7x + 2 = (3x - 2)(3x + 2) x (2x - 1)(x + 5) = 3x + 2
2x2 - 4x - 70 2x2 + 9x - 5 (2x - 14)(x + 5) (3x - 2)(2x - 1) 2(x - 7)

E.g.2. 4x2 - 9 x x2 - 25 = (2x - 3)(2x + 3) x (x +5)(x - 5) = x-5
2 2
2x + 13x + 15 2x - 5x + 3 (2x + 3)(x + 5) (2x - 3)(x - 1) x-1

E.g.3. 2x2 + x - x2 - 13x + 20 = (2x - 5)(x + 3) x x(x - 4) = x+3
x x2 - 4x x (2x - 5)(x - 4)




Rational Expressions: Addition And Subtraction
E.g.1. 1 - 2 + x - 15 = x2 - 25 - 2(x - 5) + x - 15 , as x2 - 25 is the lowest common factor.
x+5 x2 - 25 x2 - 25

= x2 - x - 30 = (x + 5)(x - 6) = x-6
x2 - 25 (x + 5)(x - 5) x-5




E.g.2. 1 = 1 = 2x , cross-multiplying, as there is no common factor.
1+1 x+2 2+x
x 2 2x




E.g.3. 1 = 1 = 1 = 1 = x-4 ,




3 -1 3 - x-4 3 - 1(x - 4) 7-x 7-x
x-4 x-4 x-4 x-4 x-4




E.g.4. 3x + 5 - 2x - 1 = (3x + 5)(x - 1) -(2x - 1)(x + 1) = 3x + 5 - 2x + 1 = x+6
(x + 2)(x + 1) (x + 2)(x - 1) (x + 2)(x + 1)(x - 1) x+2 x+2
Here, a common factor is found & the fractions multiplied by what they need to be to have the common
factor. Remember that if there’s a common factor, simply multiply the numerators. If not, or there’s a
mixture, times the fractions by what you need to until there is.




E.g.5. x + 11 - 4 = x + 11 - 4 = x2 + 11x - 4x + 12 = x2 + 7x + 12 ,




x2 - 9 x2 + 3x (x - 3)(x + 3) x(x + 3) x(x + 3)(x - 3) x(x + 3)(x - 3)
= (x + 3)(x + 4) = x+4

, x(x + 3)(x - 3) x(x - 3)

Rational Expressions: More Difficult Division
E.g.1. 2x2 + x - 4 = (x - 1)(2x + 3) - 1 = 2x + 3 - 1 . You have to make the numerator a
x-1 x-1 x - 1 factor of (x - 1), add remainders if
they are needed, then divide out.

E.g.2. 6x3 - 4x2 - 3x - 5 = (2x2 - 1)(3x - 2) - 7 , as to get from 2 to -5, you -7. = 3x - 2 - 7 .
2x2 - 1 2x2 - 1 2x2 - 1




Ranges & Domains
Domain Range
1 3
2 5 The function for this range, with their range (answers when put in to the function of
3 7 x) is 2x + 1. A domain = the inputs, the range = the outputs. Ranges are of f(x),
4 9 not just x. Note - Even function: f(-x) = f(x) and an Odd function: f(-x) = -f(x).




One - One Mapping
f(x) = x2, x > 0. f(x) = ±√x, x < 3.
This is one-one mapping, as This isn’t one-one mapping,
there is only one y value for as there are 2 y values for
each corresponding x value. each corresponding y value.
Notice that there’s a black Notice there’s an unfilled
dot, which shows where the dot, showing where the
curve’s been cut. curve’s cut, as it’s >, not >.


f(x) = x - 3, -1 < x < 10. f(x) = √x + 2, x > 0.
Notice again the black Another unfilled < dot.
point, showing where the Unnecessary really, as
curve is cut off. It is filled no values of x are < 0.
because it is <, not <, as F(x) may be written in
with inequalities. these as f:x→√x + 2.

One-One & Many-One
E.g.1. y = x3. This is a one-one, E.g.2. y = x2, -3 < x < 2. E.g.3. A square is cut out of this square.
as no ranges are the same. So this is a many-one. Find a domain for function A. A = 144 – x2




So the min value for x is 0. Using
Pythagoras: the max value for x = √72.
Domain = 0 < x < 6√2.


E.g.3 A function is defined by h: x → cosx, 0 < x < π. Is this a one-many or one-one function?
€18,31
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
j-meizme

Maak kennis met de verkoper

Seller avatar
j-meizme The University of York
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
11 jaar
Aantal volgers
1
Documenten
3
Laatst verkocht
5 jaar geleden

I am a former student of Westminster and then the University of Cambridge, specialising in mathematics, physics and chemistry. I am currently studying for a PhD in physics, and tutor mathematics and all sciences to A-Level and higher. I have achieved excellent grades since my GCSEs (for which I obtained all A* grades), and now wish to sell my A-Level mathematics notes. Although these are relevant mostly for the Edexcel board, they are also relevant for AQA &amp; OCR; the material taught is identical

Lees meer Lees minder
0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen