100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Meth. Meas. and Statistics (424023-B-6) (Methods part only)

Beoordeling
4,7
(3)
Verkocht
2
Pagina's
29
Geüpload op
09-12-2020
Geschreven in
2020/2021

All Method lectures given by Guy Moors are included in this summary. The statistics summary is also available on my account. (You can also buy them in a bundle, which is cheaper). If you are looking for an overview of all the slides with additional information told in the lectures, this summary should fit your needs. Good luck!

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 december 2020
Aantal pagina's
29
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Methods summary

Lecture 1
1. Cornerstones of social research (chapter 2)
Proposition = general statement regarding a regularity in the behavior or opinion of subjects.
This is because theory provides an explanation for a prop.
Hypothesis = a proposition in a concrete situation.

Eg. Proposition; when someone strongly beliefs in the existence of invisible creatures, the
alleged powers assigned to such creatures become real in their consequences.
Eg. Hypothesis: The more convinced a child is in believing that monsters that haunt children
live in the dark under the bed of children, the more likely the child will experience
nightmares that prevent the child from sleeping in dark bedrooms.

2. Science as a process: induction – deduction (chapter 2)




Lecture 2
3. Concepts, variables and hypotheses (chapter 3)
Concepts (or constructs) = general/abstract description of a social phenomenon.
E.g. ethnocentrism
Variable = empirical manifestation of a concept. `
E.g. a scale that measures ethnocentrism
Hypotheses = an expected relationship between 2 or more variables that can be researched.
E.g. women are on average less ethnocentric than men

4. Types of hypotheses
 Bivariate hypothesis: expected relationship between two variables (= total effect)
XY (X = Independent, cause. Y = dependent, outcome.  = direction of effect)
Metric measurement = scale (e.g. amount of money, intelligence)
Non-metric/categorical measurement = e.g. becoming depressed, gender
 Multivariate hypothesis: expected relationship between a dependent variable Y and
multiple independent variables X1, X2… (multiple causality)
X1 Y
X2

Mediation: interpretation of a relationship. The effect of the independent variable
(X1) on the dependent (Y) is indirect through its effect on the intervening or
mediating variable (X2) that in turn has an effect on the dependent (Y).

, = indirect effect
X1  X2  Y

Partial mediation: direct + indirect effect
X1  X2  Y
X1  Y

Moderating effect:
Interaction hypothesis. The effect of X1 on Y is conditional on the moderator (X2)
Or
the effect of X1 on Y is different depending on the value of the moderator X2.
= Conditional effect (intensifier (+) or suppressor (-) effect)
X1  Y
X2

Spurious relationship: common cause (antecedent), explanatory hypothesis
(=explanation), an observed relationship between X1 and Y is spurious because they
share a common cause X2.
X2 X1
Y

 The conceptual model: = graphical representation of a set of logically connected
hypotheses = full picture.
 Researching the 3th variable effect: Elaboration (Chapter 15. P. 455-462)
= enhancing or ‘elaborating’ our understanding of a bivariate relationship by
introducing a 3th ‘control’ variable in contingency tables (or cross-tabulations)
= applies to moderation, mediation and spuriousness.
E.g. do religious people eat more fastfood? Dependent = meal preference;
independent = religiosity. Answer= yes they do! Or not…
By adding the variable ‘education’ this relation disappears. Meal preference is
dependent on education.

(Distorter: Simpsons paradox: er is een positieve trend voor elk van twee afzonderlijke
groepen, maar er verschijnt een negatieve trend als de data worden gecombineerd.)

!!!!!

, Lecture 3
5. Causality (chapter 3)
3 necessary conditions to establish causality
a) Association,
b) Direction of the relationship
c) Nonspuriousness (or absence of spuriousness schijncorrelaties) So, not false!

a) Association= statistical relationship between the variables
Need to be a ‘perfect’ relationship. Often ‘week’ relationships observed due to:
- Measurement error (lack of precision)
- Multicausality
b) Direction of the relationship
Independent variable influences dependent variable. Sometimes obvious (characteristics
that are fixed by birth) but not always! E.g. does ethnocentrism influence the contact with
immigrants or does having contact with immigrants influence a person’s level of
ethnocentrism?
c) Nonspuriousness
No extraneous variables or antecedents are allowed to explain the relationship between the
variables interest.
So  that is why taking into account the effect of antecedents is crucial to establish causality
in an empirical situation.
(antecedents are often called control variables. The more control variables in a model the
more likely the relationship is not spurious if still observed when the control variables are
included) So with only 2 variables you are less sure about the relationship than with 4.

6. Unit analysis and nested data (chapter 3)
 Unit of analysis = about whom or what statements are made in the research.
Note: unit of observation may deviate from unit of analysis in a research.
E.g. Unit of analysis = work team (group)
Unit of observation = the direct manager or leader of the work team (who fills in a
questionnaire regarding that work team)

 Nested data = multilevel data
Combining data from different units of observation in which individual cases constitute
elements of larger groups (aggregates)
e.g. European values study = survey research among representative samples across EU
countries.

Information sources at group level:
- National and regional statistics (= in a country-region-individual nested design)
- Data from previous research (matching at the group level) = external aggregation.
- Aggregating individual level data; e.g. % of unemployed with the different regions (=
internal aggregation)

7. Logical fallacies (chapter 3) = denkfout
= drawing conclusions at one level while analyzing findings at another level.

Beoordelingen van geverifieerde kopers

Alle 3 reviews worden weergegeven
3 jaar geleden

4 jaar geleden

4 jaar geleden

4,7

3 beoordelingen

5
2
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maudbressers Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
258
Lid sinds
10 jaar
Aantal volgers
193
Documenten
14
Laatst verkocht
1 maand geleden

4,0

30 beoordelingen

5
14
4
8
3
5
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen