100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary EMF lecture notes as well as Q and A notes

Beoordeling
4,5
(2)
Verkocht
29
Pagina's
120
Geüpload op
09-12-2020
Geschreven in
2020/2021

Does not cover block 11 and 12. The rest is covered including the corresponding live sessions. The document is long, but it covers everything mentioned in class.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 december 2020
Aantal pagina's
120
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Empirical Methods in Finance Part 2


Table of Contents
Live session 1 ........................................................................................................................................... 3
Definition and conceptual framework......................................................................................................... 5
Extra video ATE ........................................................................................................................................... 6
Designing an event study ............................................................................................................................. 6
Difference calendar and event time....................................................................................................... 7
Stata codes ............................................................................................................................................... 7
Video normal and abnormal returns ......................................................................................................... 12
Stata commands AR and CAR ............................................................................................................ 14
Joint hypothesis problem ........................................................................................................................... 17
Canvas quizzes main points ................................................................................................................. 18
Live session 2 ......................................................................................................................................... 19
Lecture 3 Inference event studies .............................................................................................................. 23
Stata ....................................................................................................................................................... 25
Slides 2: event studies ................................................................................................................................ 26
Lecture 3 heteroscedasticity ....................................................................................................................... 28
Stata ....................................................................................................................................................... 31
Cross sectional correlation ........................................................................................................................ 32
Stata ....................................................................................................................................................... 35
Few events .................................................................................................................................................. 36
Stata few events..................................................................................................................................... 37
Recap quiz ............................................................................................................................................. 38
Live session 3 ......................................................................................................................................... 40
Lecture 4: time series ................................................................................................................................. 46
Trend and seasonality ................................................................................................................................ 47
Dynamic models ......................................................................................................................................... 50
Live session 4 ......................................................................................................................................... 55
Lecture 5: OLS assumptions and time series ............................................................................................ 59
Time series estimation Stata ...................................................................................................................... 64
Extra videos intuition ........................................................................................................................... 64
Live session 5 ......................................................................................................................................... 65
Assignment questions................................................................................................................................. 70

,Lecture 6: serial correlation and strong dependence ............................................................................... 71
Extra video random walk..................................................................................................................... 73
Serial correlation .................................................................................................................................. 73
Serial correlation testing ...................................................................................................................... 79
Stata Breusch-Godfrey ......................................................................................................................... 79
Class quiz summary.............................................................................................................................. 79
Live session 6 – serial correlation and persistent processes .............................................................. 84
Lecture 7 Time series models..................................................................................................................... 87
Time series processes ............................................................................................................................ 87
Selecting the right model ...................................................................................................................... 92
Stata ....................................................................................................................................................... 95
Live session 7.............................................................................................................................................. 96
Assignment for practice notes.................................................................................................................... 96
Lecture 8: Forecasting basics .................................................................................................................... 97
Model selection.................................................................................................................................... 100
Answers to the quiz: ........................................................................................................................... 101
Lecture 9 Stochastic volatility .................................................................................................................. 102
Stylized facts........................................................................................................................................ 102
Stochastic volatility with dice and coins ........................................................................................... 102
GARCH models .................................................................................................................................. 103
GARCH ............................................................................................................................................... 104
Leverage effects................................................................................................................................... 104
GARCH-in-mean model..................................................................................................................... 104
Live session block 8 and 9........................................................................................................................ 105
One step forecast................................................................................................................................. 105
Two step forecast → easy ................................................................................................................... 105
Two step forecast → long route ......................................................................................................... 106


................................ 106
Live session block 10 ................................................................................................................................ 106
Live session Mock exam .......................................................................................................................... 108
EXAM preparation................................................................................................................................... 109
Block 12: Live session .............................................................................................................................. 118

,Live session 1

𝐸(𝑎 + 𝑏𝑥 + 𝑐𝑦) = 𝑎 + 𝑏𝐸(𝑥) + 𝑐𝐸(𝑦)

𝑉𝑎𝑟(𝑎 + 𝑏𝑥 + 𝑐𝑦) = 0 + 𝑏 2 𝑉𝑎𝑟(𝑥) + 𝑐 2 𝑉𝑎𝑟(𝑦) + 2 ∗ 𝑏 ∗ 𝑐 ∗ 𝐶𝑜𝑣(𝑥, 𝑦)

𝐶𝑜𝑣(𝑎 + 𝑏𝑥 + 𝑐𝑦, 𝑥) = 𝐶𝑜𝑣(𝑎, 𝑥) + 𝑏 ∗ 𝐶𝑜𝑣(𝑥, 𝑥) + 𝑐 ∗ 𝐶𝑜𝑣(𝑦, 𝑥)

𝐶𝑜𝑣(𝑎, 𝑥) = 0, since a is a constant.
𝐶𝑜𝑣(𝑥, 𝑥) = 𝑉𝑎𝑟(𝑥)
𝐶𝑜𝑣(𝑦, 𝑥) = 𝐶𝑜𝑣(𝑥, 𝑦)
𝐶𝑜𝑣(𝑥, 𝑦)
𝐶𝑜𝑟𝑟(𝑥, 𝑦) =
√𝑉𝑎𝑟(𝑥) ∗ 𝑉𝑎𝑟(𝑦)

- Correlation is NOT a linear operator. This is why it falls between 0 and 1.

OLS
𝑦 = 𝛼 + 𝛽𝑥 + 𝜀
𝐶𝑜𝑣 (𝑥, 𝑦) 𝑉𝑎𝑟(𝑥)
𝛽̂ = = 𝐶𝑜𝑟𝑟(𝑥, 𝑦) ∗ √
𝑉𝑎𝑟(𝑥) 𝑉𝑎𝑟(𝑦)
- Variance of y and x is the same for event studies, so the second formula might be easier to use.

𝜀̂ = 𝐸(𝑦 − 𝛼̂ + ̂𝛽 𝑥) = 0
- Residual for OLS is ALWAYS 0.

𝛼̂ = 𝐸(𝑦) − 𝛽 ∗ 𝐸(𝑥)


Consistent: beta hat approaches beta when the sample size increases.
- Consistency is a property of the estimator but NOT of estimates.

Unbiased: the expected value of beta hat is equal to the true beta.

Efficiency: Var(beta_hat) < Var(beta_tilda)
̂
𝑉𝑎𝑟(𝛽)
IFFF ̃
𝑉𝑎𝑟(𝛾
→ 𝑐 < 1, as sample size increases.

1 1
𝑉1 = ∑(𝑥𝑖 − 𝑥)2 𝑎𝑛𝑑 𝑉2 = ∑(𝑥𝑖 − 𝑥)2
𝑁 𝑁−1

Differences two estimators of the variance:
- Both are consistent.
- V2 is unbiased but V1 has bias.
o Use V2 for small sample sizes.
- V1 is more efficient than V2.
o Use for large sample sizes.

V1 can never be BLUE, because it is biased.
- BLUE: Best Linear Unbiased Estimator.

, Conditioning: we take a subset of the sample and we take a moment in the subset of the sample.
You have 5 squares with different colors and each square has a color.




(8 + 1)
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑) = = 4.5
2
10
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛) = = 3.3
3
2 3
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟) = 2.5 ∗ ( ) + 3.3 ∗ ( ) = 3.8
5 5

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 2 ∑ 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 2
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟) = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
− ( 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠)

64+1 8+1 2
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑) = 2
− ( 2
) = 12.25
25 + 4 + 9 5 + 2 + 3 2 14
𝑉(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛) = −( ) =
3 3 9

2 3 14 175
𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟) = ∗ 12.25 + ∗ = ≈ 5.8
5 5 9 30

- We haven’t computed the risk before knowing the color. We have calculated the average risk
with knowing the color. So, there is still some risk there. As a result, it is an approximation.

We can, however, determine the true value by covering these steps:


2
𝑉(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)) = 𝐸(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)2 ) − 𝐸(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟))
2 10 2 3
𝑉(𝐸(𝑛𝑢𝑚𝑏𝑒𝑟|𝑐𝑜𝑙𝑜𝑟)) = 4.52 ∗ + ( ) ∗ − 3.82 = 0.326
5 3 5
Right result = 0.326 + 5.8 = 6.126

Law of total expectation:
𝐸(𝑦) = 𝐸(𝐸(𝑦|𝑥)) = ∑ 𝐸(𝑦|𝑥 = 𝑥𝑖 ) ∗ 𝑃(𝑥 = 𝑥𝑖 )

Law total variance:
𝑉(𝑦) = 𝑉(𝐸(𝑦|𝑥)) + 𝐸(𝑉(𝑦|𝑥))
- Expected idiosyncratic volatility

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
4 jaar geleden

4 jaar geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
marissameulendijks Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
125
Lid sinds
5 jaar
Aantal volgers
85
Documenten
10
Laatst verkocht
6 maanden geleden

3,4

10 beoordelingen

5
4
4
2
3
1
2
0
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen