100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Part 2 summary Business Analytics: Week 5 - Week 7

Beoordeling
3,8
(4)
Verkocht
14
Pagina's
17
Geüpload op
07-12-2020
Geschreven in
2020/2021

Part 2 of the summary for the course 'Business Analytics'. Includes all the reading material for week 5, 6, and 7. Week 5 --> Read chapter 4.1-4.3 Week 6 --> Read chapter 5.1-5.2 Week 7 --> Read chapter 8.1-8.2.2











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
4.1 | 4.2 | 4.3 | 5.1 | 5.2 | 8.1 | 8.2.1 | 8.2.2
Geüpload op
7 december 2020
Aantal pagina's
17
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary Endterm Business Analytics week 5 - week 7

WEEK 5 CHAPTERS
In this chapter, we study approaches for predicting qualitative responses, a process that is known as
classification​.

4.1 An Overview of Classification

Classification problem example​:
A person arrives at the emergency room with a set of symptoms that could possibly be
attributed to one of three medical conditions. Which of the three conditions does the individual have?

Just as in the regression setting, in the classification setting we have a set of training observations
(​x1,y1​),...,(​xn,yn​) that we can use to build a classifier. We want our classifier to perform well not only
on the training data, but also on test observations that were not used to train the classifier.

4.2 Why Not Linear Regression?

Suppose we have three possible diagnoses.




Linear regression would not be appropriate in this case, because of the qualitative responses. The
difference between for example stroke and epileptic seizure, would not be the same as the difference
between drug overdose and epileptic seizure. Each of these codings would produce fundamentally
different linear models that would ultimately lead to different sets of predictions on test observations.

Only if the response variable’s values did take on a natural ordering, such as mild, moderate, and
severe, and we felt the gap between mild and moderate was similar to the gap between moderate and
severe, then a 1, 2, 3 coding would be reasonable.

For a ​binary​ (two level) qualitative response, the situation is better. For instance, perhaps there are
only two possibilities for the patient’s medical condition: stroke and drug overdose. We could then
use the dummy variable approach where stroke = 0 and drug overdose = 1.
For a binary response with a 0/1 coding as above, regression by ​least squares​ does make sense; it can
be shown that the ​Xˆ β o​ btained using linear regression is in fact an estimate of Pr(drug overdose|X) in
this special case. However, if we use linear regression, some of our estimates might be outside the
[0,1] interval (e.g. below 0), making them hard to interpret as probabilities! Nevertheless, the
predictions provide an ordering and can be interpreted as crude probability estimates. Curiously, it
turns out that the classifications that we get if we use linear regression to predict a binary response
will be the same as for the linear discriminant analysis (LDA).




1

,4.3 Logistic Regression
4.3.1 The Logistic Regression Model

How should we model the relationship between ​p(​ X)=Pr(Y=1|X) and X? (For convenience we are
using the generic 0/1 coding for the response)​.

To avoid the problem that ​p​ will be lower than 0 or higher than 1, we must model ​p​(X) using a
function that gives outputs between 0 and 1 for all values of X. Many functions meet this description.
In logistic regression, we use the ​logistic function




To fit the model, we use a method called ​maximum likelihood​, which we discuss in the next section.
The logistic function will always produce an ​S-shaped curve​ of this form, and so regardless of the
value of X, we will obtain a sensible prediction.

After a bit of manipulation of the above formula, we find that




The quantity ​p(​ X)/[1−p(X)] is called the ​odds​, and can take on any value between 0 and ∞. Values of
the odds close to 0 and ∞ indicate very low and very high probabilities of default, respectively. By
taking the logarithm of both sides of the above formula, we arrive




The left-hand side is called the ​log-odds​ or ​logit​. In a logistic regression model, increasing X by one
unit changes the log odds by β1, or equivalently it multiplies the odds by eβ1. The amount that ​p(​ X)
changes due to a one-unit change in X will depend on the current value of X. But regardless of the
value of X, if β1 is positive then increasing X will be associated with increasing ​p(​ X), and if β1 is
negative then increasing X will be associated with decreasing ​p​(X)

4.3.2 Estimating the Regression Coefficients

We could use (non-linear) least squares to fit the model, but the more general method of ​maximum
likelihood​ is preferred, since it has better statistical properties.
The basic intuition behind using maximum likelihood to fit a logistic regression model is as follows:
we seek estimates for β0 and β1 such that the predicted probability ​ˆp(xi)​ of default for each
individual, corresponds as closely as possible to the individual’s observed default status. In other
words, we try to find ˆβ0 and ˆβ1 such that plugging these estimates into the model for ​p​(X), yields a
number close to one for all individuals who defaulted, and a number close to zero for all individuals
who did not. This intuition can be formalized using a mathematical equation called a ​likelihood
function​:




2

, The estimates ˆβ0 and ˆβ1 are chosen to maximize this likelihood function.

4.3.3 Making Predictions

Once the coefficients have been estimated, it is a simple matter to compute the probability of Y for
any given X. For example, the probability below is less than 1%




One can use qualitative predictors with the logistic regression model using the dummy variable
approach explained in 4.2.

4.3.4 Multiple Logistic Regression

We now consider the problem of predicting a binary response using multiple predictors. By analogy
with the extension from simple to multiple linear regression in Chapter 3, we can generalize the
simple logistics regression formula as follows:




where ​X = (X1,...,Xp)​ are ​p​ predictors. This equation can be rewritten as




Again, we use the maximum likelihood method to estimate the coefficients.

Confounding
A phenomenon where the results obtained using one predictor may be quite different from those
obtained using multiple predictors, especially when there is correlation among the predictors.

Table 4.2 only has student status as a predictor. Table 4.3 has 2 predictors, credit card balance and
students status.




3
€6,49
Krijg toegang tot het volledige document:
Gekocht door 14 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 4 reviews worden weergegeven
5 jaar geleden

5 jaar geleden

5 jaar geleden

5 jaar geleden

3,8

4 beoordelingen

5
0
4
3
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jtimmermans Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
152
Lid sinds
5 jaar
Aantal volgers
106
Documenten
14
Laatst verkocht
3 maanden geleden

3,6

17 beoordelingen

5
2
4
9
3
4
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen