100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

EDEXCEL A-Level Pure Mathematics Paper 2 2025 - Mark Scheme

Beoordeling
-
Verkocht
-
Pagina's
38
Cijfer
A+
Geüpload op
05-09-2025
Geschreven in
2025/2026

This document contains the Pearson Edexcel A-level Pure Mathematics 2 Paper 2, Mark Scheme (MS) for the 2025 exam series. Get yours now to aid in revision and upcoming mocks! *Question Paper (QP) for this document is also available for purchase individually or in a package deal with MS.

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Study Level
Publisher
Subject
Course

Documentinformatie

Geüpload op
5 september 2025
Aantal pagina's
38
Geschreven in
2025/2026
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

ALEVELPAPERZ2025




Mark Scheme (Results)


Summer 2025




Pearson Edexcel GCE
In Mathematics (9MA0)

Paper 02 Pure Mathematics

,ALEVELPAPERZ2025

Question Scheme Marks AOs

1 ( ) (
2 x x 2 − 12 x + 20 or x 2 x 2 − 24 x + 40 ) B1 1.1b
x 2 − 12 x + 20 = ( x − 2 )( x − 10 )
M1 1.1b
or e.g. 2 x 2 − 24 x + 40 = ( 2 x − 4 )( x − 10 )
2 x ( x − 2 )( x − 10 ) A1 1.1b
(3)
(3 marks)
Notes
B1: Takes a factor of 2x or x out of the given cubic correctly.
( )
Dividing by 2 and then achieving x x 2 − 12 x + 20 does not score this mark unless recovered.
M1: Attempts to factorise their quadratic. Invisible brackets may be implied by later work.
Score for ( x ± b )( x ± d ) where bd = 20 coming from x 2 ± 12 x ± 20
or for ( ax ± b )( cx ± d ) where ac = 2 and bd = 40 coming from 2 x 2 ± 24 x ± 40
May be scored if they have divided by x but not from e.g. 2 x 3 − 24 x 2 + 40 x → ( 2 x − 4 )( x − 10 )
without clear indication that they have divided by or taken out a factor of x or 2x.
There may be incorrect intermediate steps such as ( 2 x − 20 )( 2 x − 4 ) which do not score the
mark on their own but may be ignored if they return to e.g. ( 2 x − 20 )( x − 2 ) .
A1: 2 x ( x − 2 )( x − 10 ) or e.g. 2 ( x − 10 )( x − 2 ) x . Do not accept e.g. x ( 2 x − 4 )( x − 10 ) . Ignore = 0
ISW after a fully correct factorisation e.g. 2 x ( x − 2 )( x − 10 ) that becomes x ( x − 2 )( x − 10 )
and ignore any attempt to find roots (before or after factorisation). Allow ( 2 x )( x − 2 )( x − 10 )
Alternative:
B1: Takes a factor of ( x − 2 ) or ( x − 10 ) out correctly i.e. ( x − 2 ) 2 x 2 − 20 x or( )
( x − 10 ) ( 2 x 2 − 4 x ) . Must be seen as a product of factors and not just in a division attempt but
may be implied by later work.
M1: Attempts to factorise their quadratic. Invisible brackets may be implied by later work.
Score for ax ( bx ± c ) where ab = "2" and ac = their "20" or "4" coming from Ax 2 + Bx
A1: As main scheme.
Note: Solutions that solve the cubic = 0 to achieve x = 0, 2 and 10 and then arrive at e.g.
x ( x − 2 )( x − 10 ) score no marks without a prior line of working such as x x 2 − 12 x + 20 ( )
( )
(would score M1) or x 2 x 2 − 24 x + 40 (would score B1).
Some examples:
• 2 x 3 − 24 x 2 + 40 x → x ( x − 2 )( x − 10 ) scores B0M0A0
• 2 x 3 − 24 x 2 + 40 x → ( 2 x − 4 )( x − 10 ) scores B0M0A0
• x 2 − 12 x + 20 → ( x + 2 )( x − 10 ) scores B0M1A0
• x 3 − 12 x 2 + 20 x → x ( x − 2 )( x − 10 ) scores B0M1A0
• ( )
x 2 x 2 − 24 x + 40 → x ( x − 2 )( x − 10 ) scores B1M0A0
• x ( 2x 2
− 24 x + 40 ) → { x ( 2 x + 2 )( 2 x + 40 ) →} x ( 2 x + 2 )( x + 20 ) scores B1M1A0
• 2x ( x 2
− 12 x + 20 ) → 2 x ( x − 1)( x + 20 ) scores B1M1A0
• 2 x ( x − 2 )( x − 10 ) on its own scores B1M1A1

,Question Scheme Marks AOs

2 1 3
M1 1.1a
x 4 → … x5 or x 2 → … x 2 or −3 → … x
1 5 6 32
Any of x or − x or −3x
5 3 A1 1.1b
 
2
1 5 6 32
Any two of x or − x or −3x
5 3 A1 1.1b
 
2
3
1 5
x − 4 x 2 − 3x + c A1 1.1b
5
(4)
(4 marks)
Notes
M1: For increasing any power by one. Score for x n → x n +1 in any term, including, −3 → … x
where … is a constant, but not for + c. Allow the indices to be unprocessed, e.g., x 4+1
A1: One correct term which may be unsimplified and indices may be unprocessed.
1
6 +1
Condone e.g. −3x1 or − x 2 for this mark. Not scored for + c
1 
 + 1
2 
A1: Two correct terms which may be unsimplified but indices must be processed.
Condone −3x1 for this mark. Not scored for + c
A1: cao Requires all terms simplified and + c
Ignore the LHS i.e. ignore what they call their integral.
3
1 3
Allow 0.2x5 for x5 and −4 x3 or −4 x or −4x x or −4x1.5 for −4x 2
5
Do not allow −3x1 for this mark.
3
1 5
Condone spurious integral signs e.g. ⌠  x − 4 x 2
− 3 x + c or dx left in their answer
⌡5
ISW after a correct expression seen e.g. if they multiply through by 5 or e.g. try to solve = 0
3
1 5
Do not allow e.g. x + −4 x 2 + −3 x + c
5

, ALEVELPAPERZ2025

Question Scheme Marks AOs

3 3x =→
7y y log 7
x log 3 = M1 3.1a
 x  log 7
e.g.  =  A1 1.1b
 y  log 3
(2)
(2 marks)
Notes
x
Note: Condone absence of reference to the value of being undefined when x= y= 0
y

M1: For the key step in attempting to take logarithms with the same base of both sides and
apply the power law to both sides, e.g., x = y log 3 7 or y = x log 7 3 or x ln 3 = y ln 7
Condone e.g. x = log 3 7 y but not x = log 3 ( 7 y )
Alternatively, takes a root of both sides (either x or y), takes logs with the same base of both
x
x y x
sides and applies the power law e.g., 3 =7 → 3 =7 → y
log 3 =log 7
y
May be implied by a correct answer.
 x  log 7 ln 7 1 ln 7
A1:  = or equivalent, e.g, or log 3 7 or Condone e.g.
 y  log 3 ln 3 log 7 3 ln 3

Correct answer only scores both marks provided there is no incorrect log work.
log k 7
Any base k may be used for e.g. provided it is the same base in both logs, although
log k 3
1
 log 3 7  2 log 3 k
watch out for e.g.   or for constant k > 0 which are exceptions and correct.
 log 7 3  log 7 k
x
There is no need to see = but it should be clear what their answer is.
y
log 7 7
Do not ISW if they incorrectly apply log laws e.g. = log =or log 7 − log 3
log 3 3
or log ( 7 − 3) all of which score M1A0.
=
You may ISW after a correct answer if they go on to provide a decimal approximation.
A decimal approximation with no correct log work seen (1.7712…) scores no marks.
€10,70
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ALevelPaperzz2025 University College London
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
157
Lid sinds
1 jaar
Aantal volgers
2
Documenten
31
Laatst verkocht
5 dagen geleden
ALevelPaperzz2024

4,4

27 beoordelingen

5
18
4
6
3
1
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen