First Course in Abstract Algebra A
nn nn nn nn nn nn
8th Edition by John B. Fraleigh
nn nn nn nn nn nn nn nn
nn nn All Chapters Full Complete
nn nn nn
, CONTENTS
1. Sets nn and nn Relations 1
I. Groups nn and n n Subgroups
2. Introduction n n and n n Examples 4
3. Binary n n Operations 7
4. Isomorphic n n Binary n n Structures 9
5. Groups 13
6. Subgroups 17
7. Cyclic nn n n Groups 21
8. Generators n n and n n Cayley n n Digraphs 24
II. Permutations, Cosets, and Direct Products
nn nn nn nn
9. Groups nn of nnPermutations 26
10. Orbits, nnCycles, nnand nnthe nnAlternating nnGroups
30
11. Cosets nnand nnthe nnTheorem nn of nn Lagrange 34
12. Direct n n Products n n and n n Finitely n n Generated n n Abelian n n Groups 37
13. Plane n n Isometries 42
III. Homomorphisms and Factor Groups nn nn nn
14. Homomorphisms 44
15. Factor n n Groups 49
16. Factor-Group n n Computations n n and n n Simple nn Groups 53
17. Group nnAction nnon nna nnSet 58
18. Applications nnof nnG-Sets nnto nnCounting 61
IV. Rings nn and nn Fields
19. Rings nnand nnFields 63
20. Integral n n Domains 68
21. Fermat’s n n and n n Euler’s n n Theorems 72
22. The n n Field n n of n n Quotients n n of n n an n n Integral n n Domain 74
23. Rings n n of n n Polynomials 76
24. Factorization nnof nnPolynomials nnover nna nnField 79
25. Noncommutative nnExamples 85
26. Ordered n n Rings n n and n n Fields 87
V. Ideals nn and nn Factor nn Rings
27. Homomorphisms nnand nnFactor nnRings 89
28. Prime nnand nnMaximal nnIdeals 94
,29. Gröbner nnBases nnfor nnIdeals 99
, VI. Extension n n Fields
30. Introduction nnto nnExtension nnFields 103
31. Vector n n Spaces 107
32. Algebraic n n Extensions 111
33. Geometric nnConstructions 115
34. Finite n n Fields 116
VII. Advanced Group Theory nn nn
35. Isomorphism nnTheorems 117
36. Series nnof nnGroups 119
37. Sylow n n Theorems 122
38. Applications n n of n n the n n Sylow nn Theory 124
39. Free n n Abelian n n Groups 128
40. Free nnGroups 130
41. Group n n Presentations 133
VIII. Groups nn in n n Topology
42. Simplicial n n Complexes n n and n n Homology n n Groups 136
43. Computations nnof nnHomology nnGroups 138
44. More nnHomology nnComputations nnand nnApplications 140
45. Homological nnAlgebra 144
IX. Factorization
46. Unique n n Factorization n n Domains 148
47. Euclidean n n Domains 151
48. Gaussian n n Integers n n and n n Multiplicative nn Norms 154
X. Automorphisms n n and n n Galois n n Theory
49. Automorphisms nnof nnFields 159
50. The n n Isomorphism n n Extension n n Theorem 164
51. Splitting nn Fields 165
52. Separable nnExtensions 167
53. Totally nnInseparable nnExtensions 171
54. Galois n n Theory 173
55. Illustrations nnof nnGalois nnTheory 176
56. CyclotomicnnExtensions 183
57. Insolvability nn of n n the n n Quintic 185
APPENDIX nn nn Matrix nn nn Algebra 187
iv