100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Network and Graphs

Beoordeling
4,0
(1)
Verkocht
9
Pagina's
24
Geüpload op
26-05-2014
Geschreven in
2013/2014

Samenvatting van alle colleges












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
26 mei 2014
Aantal pagina's
24
Geschreven in
2013/2014
Type
Samenvatting

Voorbeeld van de inhoud

Network and Graphs

Contents
Lectures..............................................................................................................................................3
1. Introduction .............................................................................................................................. 3
2. Foundations .............................................................................................................................. 4
Formalities .................................................................................................................................4
Graph representations ...............................................................................................................4
Connectivity ...............................................................................................................................5
Drawing graphs ..........................................................................................................................6
3. Extensions ................................................................................................................................. 7
Directed graphs ..........................................................................................................................7
Weighted graphs ........................................................................................................................8
Colorings ....................................................................................................................................8
4. Network Travels ...................................................................................................................... 10
Euler tours ............................................................................................................................... 10
Hamilton cycles ....................................................................................................................... 11
5. Trees........................................................................................................................................ 12
Background & Fundamentals .................................................................................................. 12
Spanning trees ........................................................................................................................ 13
Routing in communication networks...................................................................................... 13
6. Network Analysis .................................................................................................................... 15
Vertex degree.......................................................................................................................... 15
Distance statistics ................................................................................................................... 15
Clustering coefficients............................................................................................................. 15
Centrality................................................................................................................................. 16
7. Random Networks .................................................................................................................. 17
Introduction ............................................................................................................................ 17
Classical random networks ..................................................................................................... 17
Small worlds ............................................................................................................................ 18
Scale-free networks ................................................................................................................ 19
9. Social Networks....................................................................................................................... 22
Introduction ............................................................................................................................ 22
Sociograms .............................................................................................................................. 22


1

,Basic concepts ......................................................................................................................... 22
Affiliation networks................................................................................................................. 24




2

,Lectures

1. Introduction
Many real-world systems can be viewed as a collection of nodes that are linked to each other.
When it comes to connecting people, there is a long history of networks:
• In the very old days: carriers of messages (pigeons, ponies, etc.)
• Also in the old days: fire beacons, mirrors, drums, flags.
We need encoding schemes to use this type of communication.
• Since the late 1900s: communication networks.


physical connection between the two parties ⇒ circuit-switched network. In modern telephony
In traditional telecommunications networks, to hold a conversation, it was necessary to make a

networks, everything is packetized:
• Data (including samples from continuous media) is put into a packet.
• Packets are extended with address of destination and are independently routed.
Connect many computers through switches that automatically discover and maintain routes. The
Internet was born.




3

, 2. Foundations

Formalities

Graph: definition
A graph G is a tuple , of vertices V and a collection of edges E. Each edge ∈ is said to
connect two vertices , ∈ and is denoted as = 〈 , 〉. Notations:
The complement Ḡ of a graph G, has the same vertex set as G, but ∈ ̅
, .


if and only if

For any graph G and vertex ∈
.
, the neighbor set N(v) of v is the set of vertices (other than

= ∈ | ≠ ,〈 , 〉 ∈ }
v) adjacent to v:


Vertex degree
The number of edges incident with a vertex v is called the degree of v, denoted as δ(v). Loops,
i.e., edges joining a vertex with itself, are counted twice. For all graphs G:
= ∗ | |

Proof: When we count the edges of a graph G by enumerating the edges incident with each vertex of
G, we are counting each edge exactly twice.

Degree sequence
An (ordered) degree sequence is an (ordered) list of the degrees of the vertices of a graph. A
degree sequence is graphic if there is a (simple) graph with that sequence.
An ordered degree sequence s = [k, d1, d2, …, dn-1] is graphic, if and only if s* = [d1-1, d2-1, …, dk-1,
dk+1-1, …, dn-1] is also graphic. (We assume k ≥ di ≥ di+1).
Length s = n, but length s* = n - 1.

Consider a graph with sequence [4, 4, 3, 3, 3, 3, 2, 2]. Let δ(u) = 4 and consider V = {v1, v2, v3, v4}
as next highest degrees and W = {w1, w2, w3} the rest. If u is not connected only to vertices from V,
then distracting a degree from the highest nodes will not result in the correct sequence of the
resulting graph.
Problem: u is linked to a w but not to a vj, with δ(w) < δ (vj). But because δ(w) < δ (vj), there

Solution: Remove 〈 , 〉 and 〈 ! , "〉. Add 〈", 〉 and 〈 , ! 〉.
exists x adjacent to vj but not to w.


Subgraphs
# ⊆ and # ⊆ such that for all ∈ # with
〈 〉
= , ∶ , ∈ # .
H is a subgraph of G if

The subgraph induced by ∗ ⊆ has vertex set V* and edge set 〈 , 〉 ∈ | , ∈ }.
Denoted as # = & ∗ '. The subgraph induced by ∗ ⊆
Denoted as # = & ∗ '.
has vertex set V(G) and edge set E*.


Graph representations

Adjacency matrix
Adjacency matrix is symmetric: A[i, j] = A[j, i]. G is simple ⇔ A[i, j] ≤ 1 and A[i, i] = 0.
.

∀ *: ,&*, -' = *
-/0


4
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
BobotieBush
4,0
(1)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
7 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
BobotieBush Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
9
Lid sinds
13 jaar
Aantal volgers
10
Documenten
1
Laatst verkocht
2 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen