100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary RMCP (part 2) - year 2019

Beoordeling
-
Verkocht
5
Pagina's
22
Geüpload op
12-11-2020
Geschreven in
2019/2020

Made this summary myself for the master MPA in the year 2019. Hope you can use it! This only covers the second month of the course and the second exam of the course!











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Based on the lectures
Geüpload op
12 november 2020
Aantal pagina's
22
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Lecture 7: Analyzing qualitative data
3-oktober-2019

We are right now at the stage of data collection / data analysis part. But
it is iterative!

The analysis of qualitative data:
It is a rigorous, logical process through which data is given meaning.
You are interpreting the data.

Be aware of different ways of explaining the quantitative data. There is
not one good. But, there are a few important principles. Different
disciplines have different procedures.

What type of items do you see?
X Coding (looking to different objects and develop a form suitable for computer-analysis)
X Thematic structuring
X Theorizing

Assumptions of qualitative data analysis
 Reality is socially constructed)
 Emic approach (from the insider’s point of view)
 Variables are complex, interwoven and difficult to
measure
 The researcher is his/her own instrument
 No standardized procedures
 Personal involvement and partiality
 Empathic understanding

Characteristics of a qualitative researcher
 Reflexive awareness – the ability to
o Think abstractly
o Step back and critically analyze situations
o Recognize the tendency towards bias
 Openness
o Be flexible and open to helpful criticism
o Appreciative inquiry (showing true and honest interest in what they say)
 Sensitivity
o Sensitive to words, interpretations and actions of respondents

Thinking about analysis, during … :
 During design: Devising frameworks, interview guides
Constructing ways of looking, ways of understanding
 During data collection
Questioning, probing, co-construction of meaning
 Desk analysis afterwards
Coding the responses and discussions
(re-)construct relevant concepts and theories
Organize around core generalizations or ideas



1

,Principles of qualitative data analysis
1. Noticing concepts
2. Collecting examples of these concepts
3. Analyzing these concepts in order to find commonalities




Types of analysis (degrees):
 Content analysis -It’s a more descriptive way of analyzing, it is almost quantitative.
The purpose is to describe the characteristics of the document’s content by examining who
says what, to whom and with what effect and make inferences (may contain quantitative
elements).
 Thematic analysis - Identifying different core categories. Finding the different patterns
(themes) within data.
Thematic analysis as an independent qualitative descriptive approach is mainly described as
a method for identifying, analyzing and reporting patterns (themes) within data.
 Grounded analysis - Open to interpretation, construction of theory through the open analysis
of data.
The construction of theory through the open analysis of data.
There are no clear boundaries in types of analysis!

Codes: word of short phrase that represent the essence or key attribute
of narrative / verbal information
 Used to categorize data
 Coding is the process of organizing the data into ‘chunks’
(segments) that are alike
 Coded are developed into a ‘coding structure / guide’

Code structure / guide
 Compilation of emerging codes
 Brief definitions of properties for each code (can also include
illustrative codes)
 Provides guidance for when and how to use the codes
 Will evolve throughout the analyzing (refining)
 You continuously have discussions with your research team

Add quotations in the report:
 Bring the reader to reality of the situation
 Support your analysis and findings
 Illustrative
 Range of issues
 Opposing views (between stakeholders)
 But always think of anonymity!

Qualitative data: not only interviews! Also … 

Steps of coding:
1. Transcribe (interviews, field notes, etc.)
2. Collect – code – collect – code etc. (familiarization)



2

, 3. Read and re-read … suspend initial interpretation. Focused reading and open coding.
4. Close examination, label text with keywords
5. Modify codes, remove duplications, hierarchical order, integrate theory, generate theory.
6. Look for connections that emerge from the data.

Deductive research: use predefined codes
- Structured interviews
- Interview themes based on theoretical model
- Setup of analytical categories, based on the conceptual
framework of the study.
Inductive research: Iterative coding process
- Data collection and analysis are interrelated
- Coding process: Transcripts > concepts > categories
- Analytical concepts, connections and categories emerge
- Although open to the context, systematic procedures are
important: coding process
- Formulating theory (grounded theory approach (GTA))
GTA (Grounded-theory-approach), formulating theory is not doable in five months internship.

Three levels of coding:
Before coding, summarize:
- understand the narrative of your interview, what was most important (vertical analysis)?

Open coding:
- analytical process through which concepts are identified (sensitizing concepts)
- Their properties and dimensions are discovered in data
How:
- Ask the data specific set of questions
- Analyze the data minutely
- Comparing text fragments on similarities and differences
- What is the underlying concept?
- Labelling fragments with keywords: concepts and categories include as many as possible
- More a horizontal analysis is needed

Deductive research is guided by theory  testing hypothesis
Inductive is open to all concepts
Pitfall deductive research: too much fitting in existing boxes (close mind)
Pitfall inductive research: too free in accepting all concepts (messy code block)

Axial coding:
- Process of relating categories to their subcategories
- Linking categories at the level of their properties and dimensions
How:
- Examine a phenomenon in terms of properties and dimensions
- What is the underlying pattern?
- Link categories on that level
- More a vertical analysis is needed

Deductive research is looking for relations as presented in theory
Inductive research is often difficult to find evidence for relations
Pitfall deductive research: too much looking for evidence for relation (close mind)

3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
laurens2 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
64
Lid sinds
5 jaar
Aantal volgers
47
Documenten
19
Laatst verkocht
11 maanden geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen