100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

COS3761 Assignment 3 (QUALITY ANSWERS) 2025

Beoordeling
-
Verkocht
1
Pagina's
11
Cijfer
A+
Geüpload op
16-07-2025
Geschreven in
2024/2025

This document contains workings, explanations and solutions to the COS3761 Assignment 3 (QUALITY ANSWERS) 2025. For assistance whats-app us on 0.6.8..8.1.2..0.9.3.4....QUESTION 1 In which world of the Kripke model in Figure 1 is the formula ◊ p  □ q true? Option 1: world x₁ Option 2: world x₂ Option 3: world x₃, Option 4: Option 1 and Option 3 are true. UESTION 2 Which of the following does not hold in the Kripke model in Figure 1? Option 1: x₁ ╟ ◊ ◊ p .Option 2: x₂ ╟ □ p .Option 3: x₃ ╟ □ p  □ q .Option 4: x₄ ╟ □□ p QUESTION 3 Which of the following holds in the Kripke model given in Figure 1? Option 1: x₁ ╟ □ p .Option 2: x₂ ╟ ◊ ( p  q) .Option 3: x₃ ╟ ◊ p  □ ¬ q q p, q q p q x₁ x₄ x₃ q Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 20 Option 4: x₄ ╟ □ (p  q) . QUESTION 4 Which of the following formulas is true in the Kripke model given in Figure 1? Option 1: ◊ p Option 2: □ q Option 3: □ ◊ q Option 4: □ p QUESTION 5 Which of the following formulas is false in the Kripke model given in Figure 1? Option 1: p  q Option 2: □ ◊ p Option 3: □ (p  q) Option 4: p  ◊ q QUESTION 6 If we interpret □  as "It ought to be that  ", which of the following formulas correctly expresses the English sentence It ought to be the case that if it rains outside then it is permitted to take leave from work. : p stands for the declarative sentence "It rains outside" and q stands for "take leave from work"? Option 1: □ (p ¬ □ ¬ q) Option 2: □( p ¬ ◊ q) Option 3: □ p  ◊ ¬ q Option 4: □ p  □ q .QUESTION 7 Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 21 If we interpret □  as "It is necessarily true that  ", why should the formula scheme □   □ □  hold in this modality? Option 1: Because for all formulas , it is necessarily true that if  then . Option 2:Because for all formulas , if  is necessarily true, then it is necessary that it is necessarily true. Option 3:Because for all formulas , if  is not possibly true, then it is true. Option 4: Because for all formulas ,  is necessarily true if it is true. QUESTION 8 If we interpret □  as "the agent knows  ", why should the formula scheme □   □ □  hold in this modality? Option 1: If the agent knows something he knows that he knows it. Option 2: the agent knows something it doesn’t mean that he knows. Option 3: If the agent does not know something, he again knows that he knows it. Option 4: If the agent knows something, he knows that he does not know it. QUESTION 9 If we interpret □  as "it is necessarily true", which of the following formulas is not valid? Option 1: □ p  p Option 2: □ p  □¬ p Option 3: □ p  ◊ p Option 4: ◊ p  □ ◊ p Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 22 QUESTION 10 If we interpret □  as "agent A believes  ", what is the modal translation of the English sentence If agent A believes p then he believes that agent A does not believe q. Option 1: □ p □ q Option 2: □ p  ¬□ q Option 3: □ p  ¬□¬ q Option 4: □ p  □¬ q QUESTION 11 If we interpret □  as "Agent A believes  ", English translation of the formula □ p  □ ¬ q ? Option 1: If Agent A believes  then Agent A believes not . Option 2 : If Agent A believes  then Agent A does not believe . Option 3: If Agent A believes  then Agent A believes . Option 4: If Agent A believes  then Agent A does not believe not . QUESTION 12 If we interpret Kᵢ as “agent 1 knows ”, the formula scheme ¬  K₁ ¬ K₁  means Option 1: If  is true then agent 1 knows that he does not know  Option 2: If  is false then agent 1 knows that he does not know  Option 3: If  is true then agent 1 knows that he knows  Option 4: If  is false then agent 1 knows that he knows  The following natural deduction proof (without reasons) is referred to in Questions 13, 14 and 15: 1 ¬ □ ¬ (p  q) Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 23 2 □ p 3 □ ¬ q 4 p  q assumption 5 p □ e 2 6 q  e 4, 5 7 ¬ q □ e 3 8  ¬ e 6, 7 9 ¬ (p  q) ¬ i 4 - 8 10 □ ¬ (p  q) □ i 4 - 9 11  ¬ e 10, 1 12 ¬ □ ¬ q ¬ i 3 - 11 13 □ p  ¬ □ ¬ q  i 2 – 12 QUESTION 13 How many times are □ elimination and introduction rules used in the above proof? Option 1: None Option 2: □ elimination and □ introduction once are both used only once. Option 3: □ elimination is used only once but □ introduction twice. Option 4: □ elimination is used twice but □ introduction only once. QUESTION 14 What are the correct reasons for steps 1, 2 and 3 of the above proof? Option 1: 1 premise 2 assumption 3 assumption Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 24 Option 2: 1 premise 2 ¬e 1 3 ¬i 2 Option 3: 1 assumption 2 ¬e 1 3 □e 4 Option 4: 1 assumption 2 □i 2 3 assumption QUESTION 15 What sequent is proved by the above proof? Option 1: □ p  ◊ p Option 2: □ p  ¬ □ ¬ q Option 3: ¬ □ ¬ q Option 4: No proof The following incomplete natural deduction proof is referred to in Questions 16 and 17: 1 2 3 4 5 6 7 8 □ (p  q) →□ p □ q □ (p  q) assumption □p □ i3 □q □ i4 □p  □ q p  q p  e2 q e2 Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 25 QUESTION 16 What formulas and their reasons are missing in steps 2 and 7 of the above proof? Option 1: 2 p  q □ e1 7 □p□ q  I 5,6 Option 2: 2 p  q assumption 7 □p□ q →i 5,6 Option 3: 2 p  q □ e1 7 □p□ q  i 2 Option 4: 2 p  q assumption 7 □p  □ q  i 5,6 QUESTION 17 What rule is used in line 8? Option 1:  e Option 2: ¬e Option 3:  i Option 4:  i QUESTION 18 What proof strategy would you use to prove the following sequent: □ (p  q) KT4 □ □ p  □ □ q Option 1: Open a solid box and start with □ (p  q) as an assumption Use axiom T to remove the □ to get p  q. Use  elimination twice to obtain the separate atomic formulas. Use axiom 4 twice, i.e. once on each atomic formula, to add a □ to each. Use axiom 4 twice, i.e. once on □ p and once on □ q, to get □ □ p and □ □ q. Combine □ □ p and □ □ q using  introduction. Close the solid box to get the result. Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 26 Option 2: Start with □ (p  q) as a premise. Use axiom T to remove the □ to get p  q. Open a dashed box and use  elimination twice to obtain the separate atomic formulas. Use axiom 4 twice, i.e. once on each atomic formula, to add a □ to each. Close the dashed box and use □ introduction twice, i.e. once on □ p and once on □ q, to get □ □ p and □ □ q. Combine □ □ p and □ □ q using  introduction. Option 3: Start with □ (p  q) as a premise. Open a dashed box and use □ elimination to get p  q. Use  elimination twice to obtain the separate atomic formulas. Close the dashed box and use □ introduction twice, i.e. once on each atomic formula. Use axiom 4 twice, once on □ p and once on □ q, to get □ □ p and □ □ q. Combine □ □ p and □ □ q using  introduction. Option 4: Open a solid box and start with □ (p  q) as an assumption. Open a dashed box and use □ elimination to get p  q. Use  elimination twice to obtain the separate atomic formulas. Use axiom 4 twice, i.e. once on each atomic formula, to add a □ to each. Close the dashed box and use □ introduction twice, i.e. once on □ p and once on □ q, to get □ □ p and □ □ q. Close the solid box to get the result. QUESTION 19 If we interpret Ki  as "Agent i knows  ", what is the English translation of the formula ¬K1 K2 (p  q) Option 1: Agent 1 knows that agent 2 doesn't know that p and q. Option 2: Agent 1 doesn't know that agent 2 knows p and q. Option 3: If agent 1 knows that agent 2 doesn't know p and q. Option 4: If agent 1 doesn't know that agent 2 knows p and q. QUESTION 20 If we interpret Ki  as "Agent i knows  ", what formula of modal logic is correctly translated to English as Downloaded by Vusi Xhumalo () lOMoARcPSD| COS3761/103/2025 27 If agent 1 knows p then agent 2 doesn't know q. Option 1: K1 p  K2 ¬ q Option 2: ¬ (K1 p  K2 q) Option 3: K1 (p  ¬ K2 q) Option 4: K1 ¬ K2 (p  q)

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
16 juli 2025
Aantal pagina's
11
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
StudyShack Cornerstone College, Pretoria, Gauteng
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
30697
Lid sinds
9 jaar
Aantal volgers
13937
Documenten
1800
Laatst verkocht
2 weken geleden
Study Guides for Unisa Students

4,1

1780 beoordelingen

5
971
4
335
3
264
2
80
1
130

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen