100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

FMT3701 Assignment 2 (DETAILED ANSWERS) 2025 - DISTINCTION GUARANTEED

Beoordeling
-
Verkocht
-
Pagina's
13
Cijfer
A+
Geüpload op
06-07-2025
Geschreven in
2024/2025

FMT3701 Assignment 2 (DETAILED ANSWERS) 2025 - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED - DISTINCTION GUARANTEED Answers, guidelines, workings and references , ... QUESTION 1 (42 marks) 1.1 Explain the concept “number sense” and its development. (3) 1.2 Distinguish between verbal and object counting giving, two (2) examples for each (10) 1.3 Briefly contrast: 1.3.1) order irrelevance (3) 1.3.2) movement is magnitude (3) 1.3.3) abstraction (3) 1.4 Analyse the different structures of mathematical problems that Foundation Phase learners need to explore (10) 1.5 Discuss the importance of problem-solving in mathematics (10) QUESTION 2 (30 marks) 2.1 Justify the role of ethnomathematics in making mathematics more accessible and relevant to Foundation Phase learners. Provide examples of how you would incorporate ethnomathematics in your teaching. (10) 2.2 Reflect on the advantages and disadvantages of teacher and learner-centred approaches in the Foundation Phase. Which approach do you believe is more effective, and why? (10) 2.3 Motivate how the concepts of time, space and shape are interrelated in mathematics education for young learners. How can these concepts be taught in an integrated manner? (10) FMT3701/ASSESSMENT 2/0/2025 7 QUESTION 3 (20 marks) Remember to highlight the role of fractions in daily life and the significance of other mathematical concepts in grasping fraction principles. Naudé and Meier (2020:65) acknowledge the challenges learners may face when first encountering fractions in the Foundation Phase. 3.1 Using pictures and words design a lesson showing how you would teach 3.1.1 Regional or area model (10) 3.1.2 Length models (10) QUESTION 4 (8 marks) 4.1 Create a repeating pattern (2) 4.2 Determine the rule (2) 4.3 Describe the core or basic unit (2) 4.4 Identify the prediction that learners can make from the pattern (2)

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
6 juli 2025
Aantal pagina's
13
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

FMT3701
Assignment 2 2025
Unique #:

Due Date: 26 July 2025

Detailed solutions, explanations, workings
and references.

+27 81 278 3372

, QUESTION 1

1.1 Explain the concept “number sense” and its development

Number sense refers to a learner’s ability to understand numbers and how they
work. It involves knowing how to count, compare, and manipulate numbers flexibly in
real-life contexts. According to the Ontario Ministry of Education (2005), number
sense includes understanding the relationships between numbers, their
representation, quantity, and the four operations. Cunningham (2018) adds that
learners with number sense can compare quantities, identify patterns, and solve
problems logically. Number sense develops through counting, identifying patterns,
using place value, and practising operations in meaningful ways. Teachers play a
key role in helping learners apply numbers confidently and accurately.



1.2 Distinguish between verbal and object counting, giving two examples for
each

Verbal counting, also known as rote counting, is when learners recite number names
from memory, often in sequence, without necessarily understanding the value each
number represents. This type of counting often appears in early learning through
songs, rhymes, and chants. Learners may count rhythmically but do not yet grasp
one-to-one correspondence between numbers and objects. Examples include a
learner singing “one, two, three, four…” while skipping or saying numbers aloud
during a song but without counting real items.

Object counting, or rational counting, involves matching number names to actual
objects, following the one-to-one correspondence principle. In this case, learners
understand that each object must be counted once and that the last number said
represents the total quantity. This type of counting reflects deeper number sense, as
it involves understanding the concept of quantity. Examples include a learner placing
one block at a time while counting aloud “one, two, three…” and understanding that
three blocks are present. Another example is a child counting how many apples are
in a basket, saying one number for each apple, and concluding “five apples.”

In short, verbal counting demonstrates memorisation of the counting sequence, while
object counting shows understanding of quantity. For effective development of


Varsity Cube 2025 +27 81 278 3372

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
VarsityC AAA School of Advertising
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
28681
Lid sinds
8 jaar
Aantal volgers
13258
Documenten
3117
Laatst verkocht
1 week geleden

4,1

2819 beoordelingen

5
1490
4
581
3
392
2
117
1
239

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen