100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

HRBUS84 Assignment 2 (LITERATURE REVIEW) 2025 - DUE 31 July 2025 -Consumer Fatigue from Hyperconnectivity and Machine Learning

Beoordeling
-
Verkocht
-
Pagina's
14
Cijfer
A+
Geüpload op
04-07-2025
Geschreven in
2024/2025

HRBUS84 Assignment 2 (LITERATURE REVIEW) 2025 - DUE 31 July 2025; 100% TRUSTED Complete, trusted solutions and explanations. For assistance, Whats-App 0.6.7-1.7.1-1.7.3.9. Ensure your success with us. Consumer Fatigue from Hyperconnectivity and Machine Learning

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
4 juli 2025
Aantal pagina's
14
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

HRBUS84
Assignment 2 2025
Consumer Fatigue from Hyperconnectivity and
Machine Learning

Due Date: 31 July 2025


LITERATURE REVIEW: CONSUMER FATIGUE FROM HYPERCONNECTIVITY AND
MACHINE LEARNING

1. INTRODUCTION

In today’s digital world, consumers interact constantly with smart devices, apps, and
websites. These interactions are shaped by machine learning (ML), which helps
businesses offer personalised content, product recommendations, and targeted
advertisements. While these technologies make life more convenient, they can also
overwhelm users. This experience of exhaustion and emotional burnout caused by
digital exposure is referred to as ―consumer fatigue.‖

Machine learning plays a central role in this problem. By collecting and analysing user
data, it delivers non-stop content such as ads, suggestions, and notifications. As Abbas
Terms of use
et al. (2022) explain, the Stressor-Strain Theory helps us understand how such systems
By making use of this document you agree to:
become digital stressors that Use negatively affect
this document as ausers.
guide forThe result
learning, is not only
comparison emotional
and reference purpose,
Terms of use
 Not to duplicate, reproduce and/or misrepresent the
and mental fatigue but also dissatisfaction with digital platforms. contents of this document as your own work,
By making use of this document you agree to:
 document
Use this
 Fully accept the consequences
solely as a guide forshould you plagiarise
learning, reference,or and
misuse this document.
comparison purposes,
 Ensure originality of your own work, and fully accept the consequences should you plagiarise or misuse this document.
 Comply with all relevant standards, guidelines, regulations, and legislation governing academic and written work.

Disclaimer
Great care has been taken in the preparation of this document; however, the contents are provided "as is" without any express or
implied representations or warranties. The author accepts no responsibility or liability for any actions taken based on the
information contained within this document. This document is intended solely for comparison, research, and reference purposes.
Reproduction, resale, or transmission of any part of this document, in any form or by any means, is strictly prohibited.

, +27 67 171 1739



LITERATURE REVIEW: CONSUMER FATIGUE FROM HYPERCONNECTIVITY
AND MACHINE LEARNING




1. INTRODUCTION

In today’s digital world, consumers interact constantly with smart devices, apps, and
websites. These interactions are shaped by machine learning (ML), which helps
businesses offer personalised content, product recommendations, and targeted
advertisements. While these technologies make life more convenient, they can also
overwhelm users. This experience of exhaustion and emotional burnout caused by
digital exposure is referred to as ―consumer fatigue.‖

Machine learning plays a central role in this problem. By collecting and analysing
user data, it delivers non-stop content such as ads, suggestions, and notifications.
As Abbas et al. (2022) explain, the Stressor-Strain Theory helps us understand how
such systems become digital stressors that negatively affect users. The result is not
only emotional and mental fatigue but also dissatisfaction with digital platforms.

In South Africa, mobile connectivity continues to rise, especially among the youth,
with more people gaining access to the internet and smart devices each year
(Brubaker, 2022). At the same time, consumers are being exposed to more machine
learning-powered content through shopping apps, streaming services, and social
media platforms. Despite this trend, limited research exists on how this exposure
affects the well-being of South African consumers.

This literature review explores the connection between machine learning and
consumer fatigue. It begins by reviewing recent studies, identifying key knowledge
gaps, and examining how machine learning affects consumer behaviour. It also
looks at the effects of hyperconnectivity and information overload and compares
theories relevant to this topic.




Disclaimer
Great care has been taken in the preparation of this document; however, the contents are provided "as is"
without any express or implied representations or warranties. The author accepts no responsibility or
liability for any actions taken based on the information contained within this document. This document is
intended solely for comparison, research, and reference purposes. Reproduction, resale, or transmission
of any part of this document, in any form or by any means, is strictly prohibited.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
EduPal University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
149214
Lid sinds
7 jaar
Aantal volgers
35996
Documenten
4352
Laatst verkocht
8 uur geleden

4,2

13562 beoordelingen

5
7808
4
2689
3
1791
2
455
1
819

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen