100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for Statistical Mechanics | 4th Edition (2021) | Pathria, & Beale | Covers All 16 Chapters

Beoordeling
-
Verkocht
-
Pagina's
181
Cijfer
A+
Geüpload op
03-07-2025
Geschreven in
2024/2025

INSTANT DOWNLOAD PDF — This Solutions Manual for Statistical Mechanics, 4th Edition (2021) by R.K. Pathria and Paul D. Beale offers fully worked-out solutions to problems from one of the most authoritative graduate-level texts in statistical physics. Covers core topics including microcanonical, canonical, and grand canonical ensembles, quantum statistics, partition functions, thermodynamic potentials, phase transitions, and critical phenomena. Ideal for physics graduate students, instructors, and anyone preparing for qualifying exams in statistical mechanics. Edition & Year: 4th Edition (2021) – Published by Academic Press statistical mechanics solutions, Pathria 4th edition PDF, statistical physics problem solutions, R.K. Pathria manual, graduate statistical mechanics, thermodynamics and statistical physics, Pathria solutions manual, statistical ensembles solved, canonical ensemble problems, quantum statistics solutions, physics graduate solutions PDF, thermodynamic potentials problems, phase transitions answers, partition function calculation, Beale statistical mechanics, advanced physics problems, statistical mechanics textbook key, equilibrium statistics solved, Pathria Beale 4th ed answers, PDF solution guide statistical mechanics, statistical physics exam prep, statistical mechanics solved questions, entropy and ensembles problems, statistical physics workbook, Pathria solutions download, critical phenomena answers, quantum gases solutions, Pathria physics manual PDF, equilibrium thermodynamics solved, statistical theory of gases

Meer zien Lees minder
Instelling
Mechanical Enginering
Vak
Mechanical enginering

















Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Mechanical enginering
Vak
Mechanical enginering

Documentinformatie

Geüpload op
3 juli 2025
Aantal pagina's
181
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

All 16 Chapters Covered




SOLUTIONS

,Chapter 1


1.1. (a) We expand the quantity ln Ω(0) (E1 ) as a Taylor series in the variable
(E1 − Ē1 ) and get

ln Ω(0) (E1 ) ≡ lnΩ1 (E1 ) + ln Ω2 (E2 ) (E2 = E (0) − E1 )
= {ln Ω1 (Ē1 ) + ln Ω2 (Ē2 )}+
 
∂ ln Ω1 (E1 ) ∂ ln Ω2 (E2 ) ∂E2
+ (E1 − Ē1 )+
∂E1 ∂E2 ∂E1 E1 =Ē1
( 2 )
1 ∂ 2 ln Ω1 (E1 ) ∂ 2 ln Ω2 (E2 ) ∂E2

+ (E1 − Ē1 )2 + · · · .
2 ∂E12 ∂E22 ∂E1
E1 =Ē1

The first term of this expansion is a constant, the second term van-
ishes as a result of equilibrium (β1 = β2 ), while the third term may
be written as
   
1 ∂β1 ∂B2 2 1 1 1
+ E1 − Ē1 = − + (E1 −Ē1 )2 ,
2 ∂E1 ∂E2 eq. 2 kT12 (Cv )1 kT22 (Cv )2

with T1 = T2 . Ignoring the subsequent terms (which is justified
if the systems involved are large) and taking the exponentials, we
readily see that the function Ω0 (E1 ) is a Gaussian in the variable
(E1 − Ē1 ), with variance kT 2 (Cv )1 (Cv )2 /{(Cv )1 + (Cv )2 }. Note that
if (Cv )2 >> (Cv )1 — corresponding to system 1 being in thermal con-
tact with a very large reservoir — then the variance becomes simply
kT 2 (Cv )1 , regardless of the nature of the reservoir; cf. eqn. (3.6.3).
(b) If the systems involved are ideal classical gases, then (Cv )1 = 32 N1 k
and (Cv )2 = 32 N2 k; the variance then becomes 32 k 2 T 2 · N1 N2 /(N1 +
N2 ). Again, if N2 >> N1 , we obtain the simplified expression
3 2 2
2 N1 k T ; cf. Problem 3.18.

1.2. Since S is additive and Ω multiplicative, the function f (Ω) must satisfy
the condition
f (Ω1 Ω2 ) = f (Ω1 ) + f (Ω2 ). (1)

5

,6 CHAPTER 1.

Differentiating (1) with respect to Ω1 (and with respect to Ω2 ), we get

Ω2 f ′ (Ω1 Ω2 ) = f ′ (Ω1 ) and Ω1 f ′ (Ω1 Ω2 ) = f ′ (Ω2 ),

so that
Ω1 f ′ (Ω1 ) = Ω2 f ′ (Ω2 ). (2)
Since the left-hand side of (2) is independent of Ω2 and the right-hand side
is independent of Ω1 , each side must be equal to a constant, k, independent
of both Ω1 and Ω2 . It follows that f ′ (Ω) = k/Ω and hence

f (Ω) = k ln Ω + const. (3)

Substituting (3) into (1), we find that the constant of integration is zero.
1.4. Instead of eqn. (1.4.1), we now have

Ω ∝ V (V − v0 )(V − 2v0 ) . . . (V − N − 1v0 ),

so that

ln Ω = C + ln V + ln (V − v0 ) + ln (V − 2v0 ) + . . . + ln (V − N − 1v0 ),

where C is independent of V . The expression on the right may be written
as
N −1 N −1 
N 2 v0
  
X jv0 X jv0
C+N ln V + ln 1 − ≃ C+N ln V + − ≃ C+N ln V − .
j=1
V j=1
V 2V

Equation (1.4.2) is then replaced by

N 2 v0
 
P N N N v0
= + = 1 + , i.e.
kT V 2V 2 V 2V
 −1
N v0
PV 1 + = NkT .
2V

Since N v0 << V, (1 + N v0 /2V )−1 ≃ 1 − N v0 /2V . Our last result then
takes the form: P (V − b) = NkT , where b = 12 N v0 .
A little reflection shows that v0 = (4π/3)σ 3 , with the result that
 3
1 4π 3 4π 1
b= N· σ = 4N · σ .
2 3 3 2

1.5. This problem is essentially solved in Appendix A; all that remains to be
done is to substitute from eqn. (B.12) into (B.11), to get
X (πε∗1/2 /L)3 (πε∗1/2 /L)2
(ε∗ ) = V ∓ S.
1 6π 2 16π

, 7

Substituting V = L3 and S = 6L2 , we obtain eqns. (1.4.15 and 16).
The expression for T now follows straightforwardly; we get
       
1 ∂ ln Ω k ∂ ln Ω k R+N k Nhν
=k = = ln = ln 1 + ,
T ∂E N hν ∂R N hν R hν E
so that
 
hν Nhν
T = ln 1 + .
k E
For E >> Nhν, we recover the classical result: T = E/Nk .
1.9. Since the function S(N,V,E) of a given thermodynamic system is an ex-
tensive quantity, we may write
   
V E V E
S(N, V, E) = Nf , = Nf (v, ε) v = ,ε = .
N N N N
It follows that
       
∂S ∂f −V ∂f −E
N =N f +N · 2 +N · 2 ,
∂N V,E ∂v ε N ∂ε v N
       
∂S ∂f ∂S. ∂f 1
V = VN · = EN · .
∂V N,E ∂v ε ∂E N,V ∂ε v N
Adding these expressions, we obtain the desired result.
1.11. Clearly, the initial temperatures and the initial particle densities of the two
gases (and hence of the mixture) are the same. The entropy of mixing may,
therefore, be obtained from eqn. (1.5.4), with N1 = 4NA and N2 = NA .
We get
(∆S)∗ = k[4NA ln(5/4) + NA ln 5]
= R[4 ln(5/4) + ln 5] = 2.502 R,
which is equivalent to about 0.5 R per mole of the mixture.
1.12. (a) The expression in question is given by eqn. (1.5.3a). Without loss of
generality, we may keep N1 , N2 and V1 fixed and vary only V2 . The
first and second derivatives of this expression are then given by
   
N1 + N2 N2 N1 + N2 N2
k − and k − + 2 (1a,b)
V1 + V 2 V2 (V1 + V2 )2 V2
respectively. Equating (1a) to zero gives the desired condition, viz.
N1 V2 = N2 V1 , i.e. N1 /V1 = N2 /V2 = n, say. Expression (1b) then
reduces to
 
n n knV1
k − + = > 0.
V1 + V2 V2 V2 (V1 + V2 )
Clearly, (∆S)1≡2 is at its minimum when N1 /V1 = N2 /V2 , and it is
straightforward to check that the value at the minimum is zero.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
TestBanksStuvia Chamberlain College Of Nursng
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2682
Lid sinds
2 jaar
Aantal volgers
1195
Documenten
1925
Laatst verkocht
1 week geleden
TESTBANKS &amp; SOLUTION MANUALS

if in any need of a Test bank and Solution Manual, fell free to Message me or Email donc8246@ gmail . All the best in your Studies

3,9

289 beoordelingen

5
158
4
43
3
30
2
20
1
38

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen