100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Advanced Data Analysis

Beoordeling
4,5
(2)
Verkocht
24
Pagina's
107
Geüpload op
07-10-2020
Geschreven in
2019/2020

An extensive English summary of the course Advanced Data Analysis followed in academic year . Obtained result with this summary was 17/20. The explanations during the class were attentively noted and processed with the slides and course material to a complete summary. This summary is a perfect preparation and guiding document for the open-book exam. The summary consists of following chapters/lessons: Introduction to data and data mining Processing principles Unsupervised clustering Data mining Principal Component Analysis & t-SNE Supervised Learning Regression Machine Learning Methods

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
7 oktober 2020
Aantal pagina's
107
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 1: INTRODUCTION

A bit of context
Big data revolution
= a revolution of information technology that is affecting industries around the globe. It has a
radically changing impact on a lot of domains in the world
= a disruptive trend in computer sciences

Big data
= data for which conventional computer-techniques are not sufficient anymore due to size,
complexity, …
= characterized by:

1. Data volume
a. data is collected everywhere
b. evolution to cloud: data is stored in clouds where it can be approached anywhere in
the world (not captured on a physical computer anymore)
c. the cost to sequence the genome is really decreasing: it becomes affordable

2. Data velocity
a. Is the speed at which data is being generated (= enormous)
b. Data is generated continuously: e.g. a smartphone is collecting
a lot of data all the time (light sensor, barometer,…)
c. Data management gap: IT staff didn’t grow as fast as data did
d. Dynamic molecular profiles: we are able to do transcriptome
profiling, sequencing the immune system, microbiome,…

! The sequencing facility and the data analysis facility are separated from each other with 1
km à what’s the most appropriate way to send the information from data analysis to the
sequencing facility? à you would think: a network, cloud,… but in fact it is a bicycle (you can
transfer a lot of hardware with a lot of TB)

3. Data variety
a. A huge diversity of data type: DNA sequences, protein structures, gene regulation,
interactions, morphology, metabolism
b. A lot of this data is heterogeneous and unstructured (e.g. text)

4. Data veracity (waarheidsgetrouw)
a. To what extent can we trust the things we see? How certain are we about things?

à Is big data a reality in life sciences? Yes (volume P - verlocity P - variety P - veracity P)




1

,Emergence of a fourth research paradigm
We have doing science for a long time – we have gone through 4 different paradigms:

1. Experimental science
a. Thousand years ago
b. Description of natural phenomena

2. Theoretical science
a. Last few hundred years
b. Newton’s laws, Maxwell’s equations,…

3. Computational science
a. Last few decades
b. Simulation of complex phenomena

4. Data-intensive science
a. Today
b. A lot of things we study we don’t study them anymore from simple observations as
we did in the past but we start from a lot of data
c. Scientists overwhelmed with data sets from many different sources
i. Data captured by instruments
ii. Data generated by simulations
iii. Data generated by sensor networks

d. eScience is the set of tools and technologies to support data federation and
collaboration
i. for analysis and data mining
ii. for data visualization and exploration
iii. for scholarly communication and dissemination


But what is data?

- Collection of data objects and their attributes

- An attribute is a property or characteristic of an object
o Examples: eye color of a person, temperature, etc
o An attribute describes an object
o Attribute is also known as variable, field, characteristic,
or feature

- A collection of attributes describes an object
o Examples: individuals,…


2

, o Object is also known as record, point, case, sample, entity, or instance

SO: Each row is an object – for each of these objects we have a series of attributes (characteristics)
® These objects and attributes are the base of a lot of data we have


Attribute values

Attribute values are numbers or symbols assigned to an attribute
- Example: eye color (attribute) can be blue, green, brown,… (attribute values)

- Distinction between attributes and attribute values
o Same attribute can be mapped to different attribute values
§ Example: height can be measured in feet or meters

o Different attributes can be mapped to the same set of values
§ Example: attribute values for ID and age are integers

o However, properties of attribute values can still be different
§ Example: ID has no limit but age has a maximum and minimum value


Attribute types

There are different types of attributes:
- Nominal
o Examples: ID numbers, eye color, zip codes à categorical attribute
o You cannot do a real comparison

- Ordinal
o Examples: rankings (e.g. taste of potato chips on a scale from 1-10)-, grades, height
in tall, medium, short
o Which you can rank

- Interval
o Examples: calendar dates, temperatures in Celsius or Fahrenheit
o Which you can do subtractions with à we know both the order and the exact
difference
o There is ‘no zero’ – can go below 0

- Ratio
o Examples: temperature in Kelvin, length, time, counts
o Which you can do divisions, multiplications with
o There is a ‘true zero’ – can’t go below 0




3

, Properties of attributes

- The type of an attribute depends on which of the following properties it possesses:
o Distinctness: = ≠
o Order: < >
o Addition: + -
o Multiplication: * /

- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties




Discrete vs. continuous

- Discrete attribute
o Can only take particular values (geen kommagetal)
o Has only a finite or countable infinite set of values
o Often represented as integer variables
o Examples: zip codes, counts, or the set of words in a collection of documents
o Other examples: eye color, house number in streets,…


4

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
4 jaar geleden

4 jaar geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
UA-BiomedischeWetenschappen Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
284
Lid sinds
5 jaar
Aantal volgers
134
Documenten
0
Laatst verkocht
3 weken geleden
Samenvattingen Bachelor en Master Biomedische Wetenschappen

4,4

29 beoordelingen

5
13
4
15
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen