100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Econometrics Course Summary: Key Concepts for Success

Beoordeling
-
Verkocht
-
Pagina's
53
Geüpload op
19-06-2025
Geschreven in
2023/2024

This summary provides a clear overview of essential econometrics principles, including regression analysis, hypothesis testing, and model specification. Designed to help students grasp complex statistical methods, this concise resource is ideal for exam preparation and coursework support. Enhance your understanding of econometrics with this valuable summary available on Stuvia!

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 juni 2025
Aantal pagina's
53
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Econometrics


June 19, 2025




1

,Econometrics


Contents
1 Lecture 1: Introduction 4
1.1 Global data lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 what is econometrics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 from theory to empirics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 how we structure data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Types of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Causality and ceteris paribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 why is data analysis an important policy tool? . . . . . . . . . . . . . . . . . . . . 6
1.6 example 1: achievement and hours spent studying . . . . . . . . . . . . . . . . . 6
1.7 basic maths and statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.8 simple regression: two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Lecture 2: Regression Analysis 11
2.1 steps to be taken in regression analysis . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Classical assumptions OLS regression model . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multivariate linear regression model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 F-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Credible standard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Credible standard errors with R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 lecture 3: Dummies, interactions, etc. 16
3.1 Interpretation of coefficient estimates . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Sums of squares and R 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Dummy variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 dummy’s in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Dummy variables with more than 2 categories . . . . . . . . . . . . . . . . 19
3.4 Interaction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Nonlinearities and missing variables . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Lecture 4: Time series I 21
4.1 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.1 t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Confidence intervals for β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Lecture 5: Time series II 26
5.1 autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1 Consequences of pure autocorrelation . . . . . . . . . . . . . . . . . . . . 27
5.2 Detection of Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2

,Econometrics


5.3 correction for autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.4 granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Lecture 6: Panel Data I 29
6.1 types of panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Omitted variable bias/Confounders . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Panel data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Lecture 7: Panel Data II 33
7.1 techniques of panel data estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.1 Pooled OLS with panel data . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.1.2 Between estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.3 first differences estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.4 Least squares dummy variables . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1.5 Fixed effects (within) estimator . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.1.6 comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Time fixed effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Unit and time fixed effects (two way fixed effects) . . . . . . . . . . . . . . . . . . 37
7.4 Randem effects (RE) estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5 Violated OLS assumption and Serial correlation: clustered standard errors (SE) 38
7.6 Which estimator is appropriate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 summary 40




3

, Econometrics


1 Lecture 1: Introduction
1.1 Global data lab
Gobal data lab: performing researh and developing instruments for measuring and analysing
progress of societies.
The instruments include indicators, specialied databases, and web-based tools for translat-
ing data into understandable and usable knowledge.
At the heart of the data lab is the area database, a big data infrastructure with information
on over 35 milion individuals in 130+ countries.
Development indicators for 1300+ sub-national regions (provinces) within countries.


1.2 what is econometrics?
Econometrics is Theory/model, data and statistics all in 1.
Practical approach:
Economic theory → Mathematical model of theory → Econometric model of theory → Data
→ Estimation of econometric model → Hypothesis testing → Forecasting or prediction →
Using the model for control or policy purposes.

Statistical tools are used to estimate economic relationships, test economic theories and
evaluate policies.
Application of economic theory to real world data; formal economic models can be tested:
utility maximisation, supply and demand.
Theory may be ambiguous as to the effect of some policy change → program evaluation.
Rare in economics to have experimental data! Need to use nonexperimental, or observa-
tional data to make inferences, i.e. to draw conclusions.
Examples:
• Evaluation of a government policy

• Returns to schooling

• Returns to different investment funds

• Impact of conflict on sustainable development

1.2.1 from theory to empirics

Observations of real world relationships
• Systematic discription = Economic model simplifies, leaves out some factors, often
there are no functional form assumptions)

• Application of economic model to the real world: Econometric/Empirical model (impose
functional form, some factors cannot be observed

4
€5,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
stuviatraitor201
2,5
(2)

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Economics & Business Economics Year 2 package deal
-
7 2025
€ 41,93 Meer info

Maak kennis met de verkoper

Seller avatar
stuviatraitor201 Radboud Universiteit Nijmegen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
8
Lid sinds
5 maanden
Aantal volgers
0
Documenten
14
Laatst verkocht
1 maand geleden

2,5

2 beoordelingen

5
0
4
0
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen