100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Econometrics 2 Essentials: Weeks 1–3 Exam Study Guide (Endogeneity, IV, GMM, MLE)

Beoordeling
-
Verkocht
-
Pagina's
12
Geüpload op
21-05-2025
Geschreven in
2024/2025

My document is a comprehensive, beginner-friendly study guide for Weeks 1–3 of an Econometrics 2 course designed for exam preparation. It covers key econometric concepts with detailed explanations, mathematical derivations, and intuitive insights, making it ideal for students with limited econometrics background. The document includes practice questions with answers, exam tips tailored for the May 2025 exam, and Stata outputs to bridge theory and application. It’s a versatile resource for undergraduate or graduate students in economics, finance, or social sciences, serving as a course supplement or standalone guide for mastering econometrics concepts like regression analysis, causal inference, and statistical modeling.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
21 mei 2025
Aantal pagina's
12
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

Econometrics 2: Weeks 1, 2, and 3 Review –
Endogeneity, IV, GMM, and MLE

Fei Deng

May 21, 2025

Abstract

This document provides a comprehensive review of Weeks 1, 2, and 3 from
my Econometrics 2 course, focusing on endogeneity, instrumental variables (IV),
Generalized Method of Moments (GMM), and Maximum Likelihood Estimation
(MLE). It is designed for my preparation for an exam on May 26, 2025, assuming
limited prior econometrics knowledge. The review covers key concepts, examples,
mathematical derivations, practice questions, and exam preparation tips, presented
accessibly.


1 Introduction
This review summarizes Weeks 1, 2, and 3 of my Econometrics 2 course. Week 1 ad-
dresses endogeneity in the Classical Linear Regression Model (CLRM) and Instru-
mental Variables (IV) as a solution. Week 2 introduces the Generalized Method of
Moments (GMM), extending IV to handle complex models. Week 3 covers Maximum
Likelihood Estimation (MLE) and likelihood-based testing, focusing on binary choice
models. The material builds on Econometrics 1, and this summary is crafted to aid my
exam preparation with intuitive explanations.


2 Week 1: Endogeneity and Instrumental Variables
2.1 Classical Linear Regression Model (CLRM)
The CLRM assumes a linear relationship:

yi = x′i β + εi , (1)

where:
• yi : Dependent (endogenous) variable (e.g., earnings).
• xi : Explanatory (exogenous) variables (e.g., years of schooling).
• β: Coefficients to estimate.
• εi : Error term (unobserved factors).


1

, Exogeneity assumption: The error term is uncorrelated with explanatory variables:

E[εi |xi ] = 0 =⇒ Cov(xi , εi ) = 0. (2)

If exogeneity holds, Ordinary Least Squares (OLS) provides unbiased and consistent
estimates of β. If not, endogeneity causes problems.

2.2 Endogeneity
Endogeneity occurs when an explanatory variable xi is correlated with the error term:
Cov(xi , εi ) ̸= 0. This violates the exogeneity assumption, making OLS biased and incon-
sistent.
Example 1 (Earnings and Schooling). Consider the model:

log(earnings) = β1 + β2 s + ε, (3)

where s is years of schooling. If individuals choose schooling based on unmeasured ability,
which also affects earnings, ability is in ε, causing Cov(s, ε) ̸= 0.

2.3 Causes of Endogeneity
There are five main causes of endogeneity:
1. Omitted Variables: Missing variables correlated with both xi and yi .
• Example: Ability affects schooling and earnings but is omitted.
• Math: True model is yi = x′i β + wi′ γ + εi , but estimated as yi = x′i β + ui , where
ui = wi′ γ + εi . If Cov(xi , wi ) ̸= 0, then Cov(xi , ui ) ̸= 0.
2. Measurement Error: Errors in measuring xi or yi .
3. Example: Misreported schooling introduces error, correlating with ε.
4. Simultaneity: yi and xi affect each other.
5. Example: Schooling affects earnings, but expected earnings influence schooling.
6. Math: yi = βxi + εi , xi = αyi + zi .
7. Sample Selection: Non-random sample biases results.
8. Example: Studying income only for employed individuals.
9. Misspecified Dynamics: Ignoring lagged effects in time-series data.
10. Example: Autoregressive model yt = γyt−1 + εt with serial correlation.

2.4 Consequences of Endogeneity
Endogeneity leads to:
• Bias: OLS estimates are biased:

E[β̂OLS |X] = β + (X ′ X)−1 X ′ E[ε|X] ̸= β. (4)


2
€8,46
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
feideng

Maak kennis met de verkoper

Seller avatar
feideng Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
4 jaar
Aantal volgers
0
Documenten
3
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen