100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Gedragsfinanciering (behavioral finance) HW bach2

Beoordeling
-
Verkocht
-
Pagina's
32
Geüpload op
08-05-2025
Geschreven in
2024/2025

Volledige samenvatting voor het keuzevaj gedragsfinanciering (behavioral finance) in de tweede bachelor van Handelswetenschappen. Alle lessen, te kunnen oefening en voorbeeldvragen.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
8 mei 2025
Aantal pagina's
32
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

LES 1: EXPECTED VALUE & EXPECTED UTILITY THEORY

 EXPECTED VALUE
o Probability
= a number between 0 and 1 that indicates a likelihood that a particular outcome will occur,
0 means the event is impossible, 1 means it is certain (bv: flipping a coin is 0,5)
 the probability of all possible events sum to 1
 binary prospects with two prospects (x , y) and probability (p):
 ∼ = indifference
 ≻ = strict preference

o Expected value
= the value of each possible outcome times the probability of that outcome
= 𝐸𝑉(𝑥, 𝑝; 𝑦) = 𝑝𝑥 + (1 – 𝑝)𝑦
= 𝐸𝑉(𝑥𝑖, 𝑝𝑖) = ∑ p i x i
Bv: investment x considered by an investor: buying some shares cheaply, then resell them at higher
price. Assume one share costs 30p and there are three possible outcomes, each p≈0.33:
a) Shares close at flotation cost : 30p ➔ investor gets nothing (0 p payoff)
b) Shares close at 60 p ➔ investor gets 30p payoff
c) Shares close at 90 ➔ investor gets 60p payoff
=> EV: 0.33*0 + 0.33*30 + 0.33*60 ≈ 30p (Expected value is in term of payoffs not closing prices!)
=> This is a “fair bet” : the cost is equal to the expected value



o St Petersburg paradox
= A coin is tossed. If it comes up heads, you are paid €2. Then the coin is tossed again. If it comes up
heads again, you are paid €4= 22; and so on. When the coin comes up tails the game is over.
 overall people want max to pay €25 to play this gamble

 expected value is infinite:

 but still some people don’t want to play… -> expected
utility



o Expected utility (a solution to the St. Petersburg paradox by Daniel Bernoulli)
= the satisfaction or pleasure a person derives from consuming a good, service, level of wealth
(ex: the first euro’s winning means more than the last ones// poor people get more satisfaction from
winning money)
 Decreasing marginal utility: utility increases as consumption increases but at a diminishing rate =

, EXPECTED UTILITY = 𝐸𝑈(𝑥𝑖, 𝑝𝑖)= ∑ p iU ( x i )
 note difference with expected value = 𝐸𝑉(𝑥𝑖, 𝑝𝑖) = ∑ p i x i
 where the assumption is that U′(x) > 0 and U′′(x) < 0 = utility increases in outcomes (money),
but at a decreasing rate
 u(x) = ln(x) would solve the St. Petersburg paradox

o 4 axioms:
1) Completeness: a decision maker has defined preferences can always decide:
= either x ≽ y or x ≼ y ∀ x,y
2) Transitivity: a decision maker’s preferences are consistent:
= if x ≽ y and y ≽ z then x ≽ z
3) Continuity: there exists a probability p where y is equally good as px + (1 − p)z
= if x ≽ y ≽ z then ∃ p such that y ∼ px + (1 − p)z
4) Independence: An indifference between two prospects holds also if both prospects are mixed with a
common third prospect or outcome Z: x ≽ y implies (x,p;Z) ≽ (y,p;Z) ∀ p,Z meaning that if you prefer x
to y, adding or mixing another prospect should not change your preference

o Attitudes towards risk
 expected utility of a prospect will be smaller than the utility of the expectation

= concavity of the utility function and risk aversion
imply each-other

 utility is given by a linear combination of the
utilities of the outcomes

 C = certainty equivalent
 RP = EV – ce = risk premium


 Certainty equivalent
= to find the sure amount of money that makes a decision maker indifferent between playing the
prospect and obtaining that amount (that’s the amount that makes you indifferent from playing or
taking the money)
=
= U(CE) = W(p) * UX + (1-W(p)) * UY --------> met W(p) = (CE-Y)/(X-Y)

 if ce < 𝐸𝑉(𝑥𝑖 , 𝑝𝑖) = Σ𝑖 𝑝𝑖 𝑥𝑖 : the agent is risk averse, RP = EV - ce > 0
 if ce = 𝐸𝑉(𝑥𝑖 , 𝑝𝑖) = Σ𝑖 𝑝𝑖 𝑥𝑖 : the agent is risk neutral
 if ce > 𝐸𝑉(𝑥𝑖 , 𝑝𝑖) = Σ𝑖 𝑝𝑖 𝑥𝑖 : the agent is risk seeking (loving), RP = EV - ce < 0




 Someone risk averse would reject a fair gamble
 Someone risk seeking would accept a fair gamble

, LES 2: EXPECTED UTILITY THEORY PARADOXES

 INSURANCE AND GAMBLING
 clarification that EUT could explain coexistence of gambling and insurance
 a utility function that has ‘double inflection point’ = concave, convex, concave again
 concave part: below some target wealth w0, investors
display a diminishing marginal utility in wealth.
 convex part: above some target income w0, investors
display an increasing marginal utility in wealth; every
additional € makes them happier
 at wealth level w0 is person expected to both gamble, and
to take out insurance

=> The main argument: convex part may propel individuals from one social class to another
while concave part keeps the social class unchanged.
=> The marginal utilities of moving the social ladder is increasing,
while the marginal utility of increase in wealth in the same social class in decreasing

 EUT AND FINAL WEALTH
 Markowitz found that preferences changed systematically depending on the amount at stake
 for losses: agents prefer paying a small sure amount to avoid a larger loss, but this choice
pattern tends to invert as outcomes are scaled up in absolute terms
 this effect is INDEPENDENT of the initial wealth of the respondents
=> conclusion: utility shouldn’t be defined over wealth/income, but over changes in wealth

 w(0) = current wealth

A: Risk seeking for small stakes
B: Risk averse for large stakes
C: Risk averse for small losses
D: Risk seeking for large losses

,  FRAMING EFFECT
= when equivalent descriptions of the same situation leads to different choices.
 experiment: choose an option from each problem:
Problem 1) You are given a cash gift of EUR 200. And are asked to choose one of 2 options:
A: obtaining EUR 50 for sure
B: 25% chance to win an additional EUR 200 and a 75% chance of winning nothing
Problem 2) You are given a cash gift of EUR 400. And are asked to choose one of 2 options:
C: Losing EUR 150 for sure.
D: 75% probability of losing EUR 200 and a 25% probability of losing nothing

=> most people choose A and D
=> this choice pattern violates expected utility theory because EUT assumes people have
consistent choices regardless of the frame

 ALLIAS PARADOX
Imagine you have the choice between two gambles to win millions of money:
.

 In prospect A, €1m can be obtained for sure (100%),
choosing the prospect and losing (1%) could trigger regret
 In prospect B, probability difference is small and
outcome difference is large: tempting to choose the larger
outcome with smallest probability difference
 This implies that a 1% chance is not equal to a 1%
chance, depending on where it falls
= THE INTUITION
 FORMAL PROOF:
prospect B: 0.11 U(€1m) + 0.89 x U(€0m) < 0.10 x U(€5m) + 0.90U(€0m)
0.11 U(€1m) < 0.10 x U(€5m) + 0.90U(€0m) - 0.89 x U(€0m)
1x U(€1m)- 0.89 x U(€1m) < 0.10 x U(€5m) + 0.90 x U(€0m) - 0.89 x U(€0m)
1x U(€1m) < 0.10 x U(€5m) + 0.89 x U(€1m) + 0.01x U(€0m)
Prospect A: 1x U(€1m) > 0.10 x U(€5m) + 0.89x U(€1m) + 0.01x U(€0m)
 100% kans op 1 miljoen is toch NIET kleiner dan de andere kans
= The results are contradictory and violate Expected Utility Theory

 ELLSBERG PARADOX (decision under ambiguity)
Ambiguity aversion: difference between risk and uncertainty
= probabilities are observable under risk and are unobservable under uncertainty
 Example: There are two urns, the first 50 black and 50 red balls, the second 100 red or black balls in
unknown proportion. Choose a colour on which to bet, and an urn. Then extract one ball to win €100.
If a ball of the declared colour appears you get €100 and else 0. Which do you pick?
 Most people prefer to bet on the urn with the known proportion of colours; they are usually
willing to leave some money on the table for this preference
 This contradicts (subjective) expected utility theory: you should pick the likelier (subjective
believe) ball if you think the urn is unfair
 punknown(Red) +punknown(Black) < pknown(Red) +pknown(Black) = 1 => IMPOSSIBLE
 This contradicts the principle that probabilities must sum to 1, i.e. the subjective probabilities

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
millla Universiteit Gent
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
124
Lid sinds
2 jaar
Aantal volgers
15
Documenten
29
Laatst verkocht
4 dagen geleden

Heyy! Ik ben Milla en ik studeer Handelswetenschappen aan de Ugent sinds academiejaar . Alle samenvattingen die ik online zet zijn voor vakken waarvoor ik geslaagd ben met die samenvatting, dus zeker de moeite waard om eens te kijken. Bij vragen mag je me altijd contacteren, veel succes gewenst! :)

3,6

14 beoordelingen

5
3
4
6
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen