100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Probability theory

Beoordeling
-
Verkocht
-
Pagina's
20
Geüpload op
10-04-2025
Geschreven in
2021/2022

Summary of Probability Theory











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 april 2025
Aantal pagina's
20
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Combinatorics
So you think you can count?
The factorial
n! := (n)(n − 1)(n − 2) . . . (2)(1)

and can be used to describe how many ways there are to put n numbers in a sequence. Such an ordering is
called a permutation.
If we want to find how many ways there are to pick a sequence of k distinct numbers (without replacement)
chosen out of n distinct numbers, we use the falling factorial:

n!
(n)k :=
(n − k)!

If we just want a sequence of k not necessarily distinct (with replacement) numbers chosen from n numbers,
that is simply nk .
If we want to draw without replacement and without order (finding the number of subsets of size k), we
need the binomial coefficient. This is pronounced n choose k:
!
n n!
:=
k k!(n − k)!


Inclusion-exclusion (counting version)
If there are N people and r properties (p1 , . . . , pr ) of interest, the amount of people who possess none of the
properties are given by
r
X X X
N− N (pj ) + N (pj1 , pj2 ) − N (pj1 , pj2 , pj3 ) + · · · + (−1)r N (p1 , . . . , pr )
j=1 1≤j1 <j2 ≤r 1≤j1 <j2 <j3 ≤r


Dn , the number of derangements of n numbers:

n
!
X 1r n!
Dn = n! · (−1) ≈
r=0
r! e




1

,2. Basics of set theory
Set theory
A sample space is a set Ω. Any element ω ∈ Ω is called an outcome. Any subset A ⊆ Ω is called an event.
Theorem 2.1.1 For any A, B, C ⊆ Ω and ω ∈ Ω:

• if ω ∈ A and A ⊆ B, then • A ∩ B ⊆ A, B • A∪(B∩C) = (A∪B)∩(A∪C)
ω∈B
• A ∪ (B ∪ C) = (A ∪ B) ∪ C • (A ∪ B)c = Ac ∩ B c
• A∩B =B∩A

• A∪B =B∪A • A ∩ (B ∩ C) = (A ∩ B) ∩ C • (A ∩ B)c = Ac ∪ B c

• A, B ⊆ A ∪ B • A∩(B∪C) = (A∩B)∪(A∩C) • A\B = A ∩ B c


Definition 2.1.2A, B are disjoint if A ∩ B = ∅. A1 , A2 , . . . are pairwise disjoint if Ai ∩ Aj = ∅ for all i ̸= j


The axioms of probability
Definition 2.2.1 A probability space is a triple (Ω, A, P) where ω is a set as above,

Set of all subsets of Ω if Ω is countable
A=
A certain set of subsets of Ω if Ω is uncountable

And P is the probability function on S: that is a function P : A → [0, 1] satisfying the axioms of probability:

1. P(Ω) = 1
S  P
2. if A1 , A2 , . . . are pairwise disjoint, then P Ai = i=1 P(Ai ) (sigma additivity)
i≥1
P
Theorem 2.2.1 Suppose Ω = {ω1 , ω2 , . . . } an p1 , p2 , . . . are non-negative numbers with pi = 1. Defining,
P
for all A ⊆ Ω, P(A) = i:wi ∈A pi . The function P thus obtained is a probability.
Theorem 2.2.2 First properties of probabilities

• P(∅) = 0 • P(A) ≤ 1

• If  B1 , . . . , 
Bn are pairwise disjoint, then
S P • P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
P i≤n i =B i≤n P(Bi )

• P(Ac ) = 1 − P(A) • If A ⊆ B, then P(A) ≤ P(B)


Theorem 2.2.3 Sigma sub-additivity
S  P
For any A1 , A2 , . . . , P i≥1 Ai ≤ i≥1 P(Ai )
Theorem 2.2.4 If (Ω, A, P) is a probability space, Ω is finite and the outcomes ω ∈ Ω all have the same
probability, then, for any A ∈ A,

#A number of elements of A
P(A) = =
#Ω number of elements of Ω

2

, 3.Bayes’ formula
Conditional probability and independence
Definition 3.2.1 Conditional probability. Let (Ω, A, P) be a probability space and A, B be events. Assume
P(B) > 0. Then, the probability of A given B is defined by

P(A ∩ B) P(A) · P(B|A)
P(A|B) = =
P(B) P(B)
S
Theorem 3.2.1 Assume B is an event with P(B) > 0. Assume A1 , . . . are pairwise disjoint and Ai = Ω.
Then:
X
P(B) = P(B|Ai ) · P(Ai ) (Law of total probability)
i≥1

P(B|Ai ) · P(Ai )
P(Ai |B) = P (Bayes’ formula)
j≥1 P(B|Aj ) · P(Aj )

Definition 3.2.2 Events A, B are independent if P(A ∩ B) = P(A) · P(B)
Common thinking mistake: A and B are disjoint is not the same as A and B are independent.
Definition 3.2.3 Events A1 , . . . , An are:

• Pairwise independent if P(Ai ∩ Aj ) = P(Ai ) · P(Aj ) for all i ̸= j

• Mutually independent if, for any subcollection Ai1 , . . . , Aik , it holds that

P(Ai1 ∩ · · · ∩ Aik ) = P(Ai1 ) · · · · · P(Aik )


• If A1 , . . . , An are mutually independent, then they are also pairwise independent. The converse does
not necessarily hold.




3
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jardnijholt

Maak kennis met de verkoper

Seller avatar
jardnijholt Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3
Lid sinds
7 maanden
Aantal volgers
0
Documenten
22
Laatst verkocht
6 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen