100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Beoordeling
-
Verkocht
-
Pagina's
1000
Cijfer
A+
Geüpload op
04-04-2025
Geschreven in
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Instelling
First Course In Differential Equations With Modeli
Vak
First Course in Differential Equations with Modeli











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
First Course in Differential Equations with Modeli
Vak
First Course in Differential Equations with Modeli

Documentinformatie

Geüpload op
4 april 2025
Aantal pagina's
1000
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

A First Course in Differential
Qi Qi Qi Qi Qi




Equations with Modeling App Qi Qi Qi




lications, 12th Edition by Den
Qi Qi Qi Qi




nis G. Zill Qi Qi




Complete Chapter Solutions Manual ar
Qi Qi Qi Qi




e included (Ch 1 to 9)
Qi Qi Qi Qi Qi




** Immediate Download
Qi Qi




** Swift Response
Qi Qi




** All Chapters included
Qi Qi Qi

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:




Solution and Answer Guide Qi Qi Qi




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
Qi Qi Qi Qi Qi Qi Qi


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS Qi Qi Qi Qi Qi Qi




TABLE OF CONTENTS QI QI




End of Section Solutions ..................................................................................................................................... 1
Qi Qi Qi



Exercises 1.1 ........................................................................................................................................................ 1
Qi



Exercises 1.2 ......................................................................................................................................................14
Qi



Exercises 1.3 ......................................................................................................................................................22
Qi



Chapter 1 in Review Solutions ...................................................................................................................... 30
Qi Qi Qi Qi




END OF SECTION SOLUTIONS
QI QI QI




EXERCISES 1.1 QI




1. Second order; linear Q i Q i


4
2. Third order; nonlinear because of (dy/dx)
Qi Qi Qi Qi Qi



3. Fourth order; linear Qi Qi



4. Second order; nonlinear because of cos(r + u)
Qi Qi Qi Qi Qi Qi Qi


5. Second order; nonlinear because of (dy/dx)2 or
Qi Qi Qi Qi Qi Qi 1 + (dy/dx)2
Qi Qi

2
6. Second order; nonlinear because of R Qi Qi Qi Qi Qi



7. Third order; linear Qi Qi


2
8. Second order; nonlinear because of ẋ Qi Qi Qi Qi Qi



9. First order; nonlinear because of sin (dy/dx)
Qi Qi Qi Qi Qi Qi



10. First order; linear Qi Qi


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonlin
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ear in y because of y . However, writing it in the form (y —
2 2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


1)(dx/dy) + x = 0, we see that it is linear in x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that it
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


is linear in v. However, writing it in the form (v + uv —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



FromQiyQi=Qie− QiweQiobtainQiyjQi=Qi—Qi1Qe −x/2.QiThenQi2yjQi+QiyQi=Qi—e−x/2Qi+Qie−x/2Qi=Qi0.
x/2 i
13. 2

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:


66 —
14. From y = Qi Qi — e we obtain dy/dt = 24e
Qi Qi Qi Qi , so that
Qi Qi

5 5
QiQi
dy −20t 6 6 Qi

— −20t
5 Qi

e
3x
15. From y = e cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


12e sin 2x, so that yjj — 6yj + 13y = 0.
3x
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

j
16. From y = — Qi Qi Qi = —1 + sin x ln(sec x + tan x) and
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

cos x ln(sec x + tan x) we obtain y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

jj
y Q i = tan x + cos x ln(sec x + tan x). Then y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i + y = tan x.
Qi Qi Qi Qi



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


we have Qi



j −
—x)y = (y — x)[1 + (2(x + 2)
Q i Qi Qi Qi Qi Qi Qi Qi ]
−1/2
= y — x + 2(y —
Qi Qi Qi Qi Qi Qi




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




= y — x + 8(x + 2)1/2
Qi Qi Qi Qi Qi Qi Qi
−1/2Q i =QiyQ i —QixQi+Qi8.


An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, ∞) because yj is not defined at x = —2.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi


{x Q i Q i 5x /= π/2 + nπ}Qi Qi Qi Qi



or {x Qi
Q i
x /= π/10 + nπ/5}. From jy = 25 s2ec 5x we have
Qi Qi Qi Qi Qi Qi Q i Qi Qi Q i Qi Qi




2 2 2
y .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


other interval is (π/10, 3π/10), and so on.
Qi Qi Qi Qi Qi Qi Qi Qi



19. The domain of the function is {x 4 — x /= 0} or {x
Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi x /= —
Q i Q i


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
Qi Qi Q i Q i Qi Qi Q i Qi Qi Qi Qi Qi


Q i Q i 1
yj = 2xQi Qi Q i = 2xy2.
Qi
2

4 — x2
Qi Qi



An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


Thus, the domain is {x x /= π/2 + 2nπ}. From y = —
Qi Qi
2
(1 — sin x) (— cos x) we have Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anoth
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

, SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1: erQioneQiisQi(5π/2,Qi9π/2),QiandQisoQion.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Profkarl Oxford University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
76
Lid sinds
1 jaar
Aantal volgers
7
Documenten
466
Laatst verkocht
1 week geleden

2,7

12 beoordelingen

5
3
4
0
3
4
2
0
1
5

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen