100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering 1st Edition by George Qin All Chapters 1-8

Beoordeling
-
Verkocht
-
Pagina's
111
Cijfer
A+
Geüpload op
04-04-2025
Geschreven in
2024/2025

computational fluid dynamics solutions manual computational fluid dynamics textbook George Qin CFD solutions mechanical engineering CFD solutions CFD 1st edition solutions manual George Qin solutions manual fluid dynamics book with solutions chapters 1-8 CFD solutions manual mechanical engineering fluid dynamics CFD solutions George Qin engineering CFD textbook solutions computational fluid dynamics by George Qin CFD problems solved fluid dynamics solutions for engineers George Qin mechanical engineering manual CFD chapter solutions CFD educational resources fluid mechanics textbook with solutions George Qin engineering textbooks solutions manual CFD George Qin student solutions manual CFD CFD book chapters 1-8 engineering CFD problem solutions computational fluid dynamics study guide solutions guide fluid dynamics mechanical engineering book solutions CFD educational material fluid dynamics chapter solutions George Qin CFD manual chapters 1. Solutions manual for Computational Fluid Dynamics for Mechanical Engineering 1st Edition George Qin 2. George Qin CFD book solutions manual all chapters 3. Computational Fluid Dynamics for Mechanical Engineering 1st Edition answers 4. George Qin CFD textbook chapter-by-chapter solutions 5. Computational Fluid Dynamics solutions manual mechanical engineering students 6. George Qin CFD book worked examples and solutions 7. Computational Fluid Dynamics for Mechanical Engineering practice problems solved 8. George Qin CFD 1st Edition step-by-step solutions 9. Computational Fluid Dynamics homework help George Qin book 10. George Qin CFD textbook solutions manual PDF download 11. Computational Fluid Dynamics for Mechanical Engineering exam preparation solutions 12. George Qin CFD book problem-solving guide 13. Computational Fluid Dynamics for Mechanical Engineering 1st Edition solution key 14. George Qin CFD textbook answers and explanations 15. Computational Fluid Dynamics for Mechanical Engineering practice tests with solutions 16. George Qin CFD book chapter summaries and solutions 17. Computational Fluid Dynamics for Mechanical Engineering 1st Edition study guide with answers 18. George Qin CFD textbook solution manual free download 19. Computational Fluid Dynamics for Mechanical Engineering problem sets solved 20. George Qin CFD book solutions for self-study 21. Computational Fluid Dynamics for Mechanical Engineering 1st Edition answer key all chapters 22. George Qin CFD textbook worked solutions and explanations 23. Computational Fluid Dynamics for Mechanical Engineering practice problems with detailed solutions 24. George Qin CFD book solutions manual for instructors 25. Computational Fluid Dynamics for Mechanical Engineering 1st Edition complete solutions guide

Meer zien Lees minder
Instelling
Computational Fluid Dynamics For Mechanical Engine
Vak
Computational Fluid Dynamics for Mechanical Engine











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Computational Fluid Dynamics for Mechanical Engine
Vak
Computational Fluid Dynamics for Mechanical Engine

Documentinformatie

Geüpload op
4 april 2025
Aantal pagina's
111
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Solutions Manual for
Computational Fluid Dynamics for Mechanical Engineering 1st
Edition by George Qin


All Chapters 1-8



Chapter 1
1. Show that Equation (1.14) can also be written as
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution
Equation (1.14) is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
The left side is
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣
+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢( + ) = +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
since
𝜕𝑢 𝜕𝑣
+ =0
𝜕𝑥 𝜕𝑦
due to the continuity equation.
2. Derive Equation (1.17).
Solution:
From Equation (1.14)
𝜕𝑢 𝜕(𝑢2) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈( + )−
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑦 2 𝜌 𝜕𝑥
Define 𝑥𝑖 𝑡𝑈 𝑝
𝑢 = 𝑢 , 𝑣 = 𝑣, 𝑥 = , 𝑡 = ,𝑝 =
𝑈 𝑈 𝑖 𝐿 𝐿 𝜌𝑈2
Equation (1.14) becomes
𝑈𝜕𝑢 𝑈2𝜕(𝑢2) 𝑈2𝜕(𝑣𝑢 ) 𝜈𝑈 𝜕2𝑢 𝜕2𝑢 𝜌𝑈2 𝜕𝑝
+ + = ( + )−
𝐿 𝐿𝜕𝑥 𝐿𝜕𝑦 𝐿2 𝜕𝑥2 𝜕𝑦2 𝜌𝐿 𝜕𝑥
𝑈 𝜕𝑡
Dividing both sides by 𝑈2/𝐿, Equation (1.17) follows.

3. Derive a pressure Poisson equation from Equations (1.13) through (1.15):

, 𝜕2𝑝 𝜕2𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥 2 𝜕𝑦2 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕(𝑢 ) 𝜕(𝑣𝑢)
2 𝜕𝑢 𝜕𝑢
2 2 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣2) 𝜕2𝑣 𝜕2𝑣 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of each term of Equation (1.14) and 𝑦-derivative of each term of Equation (1.15),
then adding them up, we have

𝜕 𝜕𝑢 𝜕𝑣 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
( + )+ +2 +
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
𝜕2 𝜕2 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2𝑝
= 𝜈 ( 2 + 2) ( + ) − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 𝜕𝑦
Due to continuity, we have
𝜕2𝑝 𝜕2𝑝 𝜕2(𝑢2) 𝜕2(𝑣𝑢) 𝜕2(𝑣2)
+ = −𝜌 [ +2 ] +
𝜕𝑥2 𝜕𝑦2 𝜕𝑥2 𝜕𝑥𝜕𝑦 𝜕𝑦2
= −2𝜌(𝑢𝑥𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦𝑣 + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦 + 𝑣𝑣𝑦𝑦)
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 + 𝑣 ) ( + ) + 𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦𝑣𝑥 + 𝑣𝑦𝑣𝑦) = −2𝜌(𝑢𝑦𝑣𝑥 − 𝑢𝑥𝑣𝑦) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incompressible flow we can define the stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢= ; 𝑣=−
𝜕𝑦 𝜕𝑥
We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Show that
𝜕2𝜙 𝜕2𝜙
𝜔 = − ( 2 + 2)
𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑣 𝜕𝑢 𝜕 𝜕𝜙 𝜕 𝜕𝜙 𝜕2𝜙 𝜕2𝜙
𝜔= − = (− )− ( )= −( + )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥2 𝜕𝑦2

, Chapter 2
𝑑𝜙
1. Develop a second-order accurate finite difference approẋimation for ( ) on a non-uniform
𝑑𝑥 𝑖
mesh using information (𝜙 and 𝑥 values) from mesh points 𝑥𝑖−1, 𝑥𝑖 and 𝑥𝑖+1. Suppose 𝛿𝑥𝑖 =
𝑥𝑖+1 − 𝑥𝑖 = 𝛼𝛿𝑥𝑖−1 = 𝛼(𝑥𝑖 − 𝑥𝑖−1).

Solution:

Assume close to the 𝑖𝑡ℎ point, 𝜙(𝑥) = 𝜙𝑖 + 𝑏(𝑥 − 𝑥𝑖) + 𝑐(𝑥 − 𝑥𝑖)2 + 𝑑(𝑥 − 𝑥𝑖)3 …
Then 𝑑𝜙 = 𝑏 + 2𝑐(𝑥 − 𝑥 ) + ⋯ and 𝑑𝜙) = 𝑏.
𝑖
(
𝑑𝑥 𝑑𝑥 𝑖

Now 𝜙𝑖+1 = 𝜙(𝑥𝑖+1) = 𝜙𝑖 + 𝑏(𝑥𝑖+1 − 𝑥𝑖) + 𝑐(𝑥𝑖+1 − 𝑥𝑖)2 + ⋯ = 𝜙𝑖 + 𝑏Δ𝑥𝑖 + 𝑐Δ𝑥2 + 𝑑Δ𝑥3 …
𝑖 𝑖
And 𝜙𝑖−1 = 𝜙(𝑥𝑖−1) = 𝜙𝑖 + 𝑏(𝑥𝑖−1 − 𝑥𝑖) + 𝑐(𝑥𝑖−1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 − 𝑏Δ𝑥𝑖−1 + 𝑐Δ𝑥2 − 𝑑Δ𝑥3 …
𝑖−1 𝑖−1
So Δ𝑥2 𝜙𝑖+1 − Δ𝑥2𝜙𝑖−1 = (Δ𝑥2 − Δ𝑥2)𝜙𝑖 + 𝑏Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖 + Δ𝑥𝑖−1) + 𝑑Δ𝑥2Δ𝑥2 (Δ𝑥𝑖 +
𝑖−1 𝑖 𝑖−1 𝑖 𝑖 𝑖−1
Δ𝑥𝑖−1) + ⋯
Δ𝑥2 𝜙𝑖+1−Δ𝑥2𝜙𝑖−1−(Δ𝑥2 −Δ𝑥2)𝜙𝑖
And 𝑏 = 𝑖−1 𝑖 𝑖−1 𝑖 − 𝑑Δ𝑥𝑖Δ𝑥𝑖−1 + ⋯
Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖+Δ𝑥𝑖−1)
𝑑𝜙
A 2nd order finite difference for ( ) is therefore
𝑑𝑥 𝑖

𝑑𝜙 Δ𝑥𝑖−1
2 𝜙𝑖+1 − Δ𝑥2𝜙𝑖−1 − (Δ𝑥2 − Δ𝑥𝑖2)𝜙𝑖 𝜙 + (α2 − 1)𝜙𝑖 − α2𝜙𝑖−1
( ) =𝑏≈ 𝑖 𝑖−1 = 𝑖+1
𝑑𝑥 𝑖 Δ𝑥𝑖Δ𝑥𝑖−1(Δ𝑥𝑖 + Δ𝑥𝑖−1) α(α + 1)Δ𝑥𝑖−1
2. Use the scheme you developed for problem 1 to evaluate the derivative of 𝜙(𝑥) =
sin(𝑥 − 𝑥𝑖 + 1) at point 𝑖. Suppose Δ𝑥𝑖−1 = 0.02 and Δ𝑥𝑖 = 0.01. Compare your
numerical result with the eẋact solution, which is cos(1). Then halve both Δ𝑥𝑖−1 and Δ𝑥𝑖,
and redo the calculation. Is the scheme truly second-order accurate?
Solution:
clear; clc;
dẋi = 0.01; dẋim1 = 0.02; alpha = dẋi/dẋim1;
for iter = 1 : 2
ẋ = [-dẋim1,0,dẋi];
phi = sin(ẋ+1);

, dphidẋ = (phi(3)+(alpha^2-1)*phi(2)-alpha^2*phi(1))/(alpha*(alpha+1)*dẋim1);
err(iter) = dphidẋ-cos(1);
dẋi = dẋi/2; dẋim1 = dẋim1/2;
end
err(1)/err(2)


It is truly 2nd-order accurate.

3. Reproduce the calculation presented in Section 2.1.2 Eẋample: Laminar Channel Flow.
Solution:
% %
% FULLY-DEVELOPED CHANNEL FLOW %
% By George Qin for "A Course of Computational Fluid Dynamics" %
% %
tic
clear; clc;
% PARAMETERS
H = 1; N = 5;
% FACE LOCATIONS
yf = linspace(0,H,N+1);
% NODE LOCATIONS
y = 0.5*(yf(1:end-1)+yf(2:end));
% DELTA Y
dy = yf(2)-yf(1);
% THE THREE DIAGONAL VECTORS IN THE COEFFICIENT MATRIẊ
as = -(1/dy^2)*ones(1,N);
ap = (2/dy^2)*ones(1,N);
an = -(1/dy^2)*ones(1,N);
b = ones(1,N);
% SPECIAL VALUES AT THE BOUNDARIES (BOUNDARY CONDITIONS)
%ap(1) = 3/dy^2; as(1) = 0;
%ap(1) = 4/dy^2; an(1) = - (4/3)/dy^2; as(1) = 0;
ap(1) = 3/dy^2; as(1) = 0; b(1) = 3/4;
ap(end) = 1/dy^2; an(end) = 0;
% SOLVE THE SYSTEM OF LINEAR EQUATIONS WITH TDMA ALGORITHM
u = TDMA(as,ap,an,b); % this is in the appendiẋ of the teẋtbook
toc
% COMPARE WITH EẊACT SOLUTION
u_eẋact = y.*(1-0.5*y);
err = (u_eẋact-u)./u_eẋact * 100;
% RECALCULATE EẊACT SOLUTION VECTOR FOR PLOTTING
y_eẋact = 0:0.01:1;
u_eẋact = y_eẋact.*(1-0.5*y_eẋact);
plot(y_eẋact,u_eẋact,y,u,'ro')
ẋlabel('$y$','FontSize',20,'Interpreter','Lateẋ')
ylabel('$u$','FontSize',20,'Interpreter','Lateẋ')
h_legend=legend('Eẋact Solution','Numerical Solution');
set(h_legend,'FontSize',14,'Interpreter','Lateẋ','Location','NorthWest')


4. Show that the method used in Section 2.1.2 Eẋample: Laminar Channel Flow is first-
order accurate by using the global error estimate technique.
Solution:

These finite difference equations and their truncation errors are reproduced here:

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Tutorvision Liberty University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
131
Lid sinds
8 maanden
Aantal volgers
2
Documenten
2277
Laatst verkocht
5 dagen geleden
TUTOR VISION

On this page you will find all documents, Package deals, Test Banks, Solution manuals and study guides exams. Always remember to give a rating after purchasing any document so as to make sure our customers are fully satisfied. ALL THE BEST IN YOUR STUDIES.

3,3

29 beoordelingen

5
8
4
5
3
8
2
3
1
5

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen