100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

ARMS lecture, seminar and grasple summary

Beoordeling
-
Verkocht
2
Pagina's
40
Geüpload op
24-03-2025
Geschreven in
2024/2025

This is all information for the exam of ARMS, including the information from the lectures, seminars and grasple assignments.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
24 maart 2025
Aantal pagina's
40
Geschreven in
2024/2025
Type
Samenvatting

Voorbeeld van de inhoud

ARMS samenvatting herkansing

Week 1

LECTURE
Frequentist framework
-​ test how well the data fit H0
-​ p-values, confidence intervals, effect sizes, power analysis

Bayesian
-​ probability of hypothesis given the data, taking prior information into account
-​ bayes factors, priors, posteriors, credible intervals

Frequentist estimation
-​ all relevant information for inference is contained in the likelihood function
-​ our parameter of interest is a population mean (µ)
-​ we assume a normal likelihood function
-​ x-as : values for µ
-​ y-as : probability of the observed data for each value of µ : P(data|µ)
→ likelihood
Bayesian estimation
-​ in addition to the data, we may also have prior information about µ
-​ central idea: prior knowledge is updated with information in the data and together
provides the posterior distribution for µ
-​ information in our dataset provides information about what reasonable
values for µ could be (through likelihood function)
-​ advantage: accumulating knowledge (today’s posterior is tomorrow's prior)
-​ disadvantage: results depend on choice of prior

Prior influences the posteriors

Bayesian estimates
-​ the posterior distribution of the parameters of interest provides all desired estimates
-​ posterior mean/mode
-​ combination of the prior and likelihood
-​ posterior SD (comparable to frequentist ‘standard error’)
-​ posterior 95% credible interval: providing the bounds of the part of the posterior
with 95% of the posterior mass

Frequentist probability
-​ p value = probability of observing same or more extreme data given that null is true
-​ testing conditions on H0
-​ the probability of an event is assumed to be the frequency with which it occurs




1

,Bayesian probability
-​ when testing hypotheses, bayesians can calculate the probability of the hypothesis given the
data
-​ bayesian conditions on observed data
-​ PMP = posterior model probability
-​ the (bayesian) probability of the hypothesis after observing the data
-​ bayesian probability of hypothesis being true, depends on 2 criteria
1.​ how sensible it is, based on prior knowledge (the prior)
2.​ how well it fits the new evidence (the data)
-​ bayesian testing is comparative: hypotheses are tested against one another, not in isolation
-​ bayes factor:



-​ BF10 = 10, support for H1 is 10 times stronger than for H0
-​ BF10 =1, support for H1 is as strong as support for H0
-​ Posterior probabilities of hypothesis (PMP) are also relative probabilities
-​ updates of prior probabilities (for hypotheses) with the BF

Definition of probability
-​ frequentist: probability is the relative frequency of events (more formal?)
-​ bayesian: probability is the degree of belief (more intuitive?)

Intervals
-​ frequentist 95% confidence interval
-​ if we were to repeat this experiment many times and calculate a CI each time, 95%
of the intervals will include the true parameter value, and 5% won’t
-​ bayesian 95% credible interval
-​ there is 95% probability that the true value is in the credible interval

Linear regression
-​ scatterplot for scores on the variables x and y and the linear positive association between
them

Multiple linear regression




-​ observed outcome is the prediction based on the model + prediction error

Model assumptions
-​ serious violations → incorrect results
-​ sometimes easy solutions
-​ per model, know what the assumptions are



2

,MLR assumptions
1.​ interval/ratio variables (outcome and predictors)
-​ MLR can handle dummy variables as predictors
-​ dummy variable has 0 and 1 (1= males, 0 = females)

Evaluating the model
-​ frequentist
-​ estimate parameters of model
-​ test with NHST if parameters are significantly non-zero




-​ bayesian
-​ estimate parameters of model
-​ compare support in data for different models/hypotheses using bayes factors

Frequentist analyses




Bayesian analysis




3

, -​ bayesian estimates are summary of posterior distribution of parameters (B)
-​ differences with frequentist results can be explained by impact of prior
-​ BFinclusion shows if the model improves with this predictor (BF = 5.467, when adding age)
-​ last column provides 95% credible interval for each regression coefficient

Hierarchical linear regression analysis
-​ comparing 2 nested models

Exploration vs theory evaluation
-​ frequentist
-​ method enter
-​ data analyst decides what goes in the model
-​ confirmatory
-​ stepwise method
-​ best prediction model is determined based on results in the sample
-​ capitalizes most on chance
-​ best chance to get replicated
-​ bayesian
-​ exploratory
-​ BAIN can evaluate informative hypotheses → confirmatory

SEMINAR
Point estimate: single value estimate of a parameter

Interval estimate: range of values believed to contain the parameter
-​ provide a measure of uncertainty
-​ more information than point estimate
-​ ‘range of plausible values’
-​ can be used for estimation and testing

Frequentist statistics: confidence interval
-​ constructing a confidence interval around a point estimate
-​ we need
-​ point estimate (the sample mean, x)
-​ SD of point estimate, s
-​ sample size, n
-​ calculate the CI




4
€10,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
mdegroot4
1,0
(1)

Maak kennis met de verkoper

Seller avatar
mdegroot4 Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10
Lid sinds
8 maanden
Aantal volgers
0
Documenten
3
Laatst verkocht
2 weken geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen