Linear Algebra and Optimization for
aa aa aa aa
Machine aa aa
Learning aa
1st Edition by Charu Aggarwal. Chapters 1
aa aa aa aa aa aa aa
– 11
aa aa aa
aa
,a
vii a
a a
Contents aa
1 Linear
f aa4 aa Algebra f aa4 aa and aa aaOptimization:
f 4 f aa4 aa An f aa4 aa Introduction aa 1 aa
,2 Linear f aa4 aa Transformations f aa4 aa and f aa4 aa Linear aa aaSystems aa
f 4 17 aa
3 Diagonalizable Matrices f4 f4 aa and Eigenvectors aa
f4 35 aa
4 Optimization Basics: A Machine Learning View aa
f4 f4 f4 f4 f4 47 aa
5 Optimization f aa4 aa Challenges f aa4 aa and f aa4 aa Advanced f aa4 Solutions aa
aa 57
aa
6 Lagrangian f aa4 aa Relaxation f aa4 aa and f aa4 aa Duality aa 63 aa
7 Singular f aa4 aa Value f aa4 aa Decomposition aa 71 aa
8 Matrix f aa4 aa Factorization aa 81 aa
9 The f aa4 aa Linear aa aaAlgebraf 4 f aa4 aa of aa aaSimilarity aa
f 4 89 aa
10 The f aa4 aa Linear aa aaAlgebraf 4 f aa4 aa of aa aaGraphs aa
f 4 95 aa
11 Optimization f aa4 aa in f aa4 aa Computational f Graphs aa
aa4 aa 101 aa
viii
,