100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of slides of 0HM280

Beoordeling
-
Verkocht
2
Pagina's
24
Geüpload op
23-06-2020
Geschreven in
2019/2020

Samenvatting bevat alles van de lectures van de powerpoints van 0HM280











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 juni 2020
Aantal pagina's
24
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary of slides of 0HM280: Human-Robot
Interaction
Lecture 1
Interaction scenario = Story which is a combination of simple actions to achieve a goal that
the user of a robot wants to accomplish.
Semantic world model = Meaningful description of the world.

Both meaningful and idle motions are similarly lifelike.
Meaningful motions make the robot appear more likeable, intelligent and emotionally
responsive.

Lecture 2
Robot navigation deals with uncertainties such as:
- Noisy sensors
- Outdated maps
- Unknown location
- Inaccurate odometry and dead reckoning
 Filters are used to update these uncertainties

Fundamental notion of probability: We can assign real
numbers to a sample of a class of events.
Frequentist interpretation of probability: Frequency of occurrence.
Bayesian interpretation of probability: Probability is a graded belief about an event.

Random variables are used to represent an uncertain outcome.
 Discrete
 Continuous

X = Random variable. Can be a countable number {x1, x2, …, xn}.
P(X=xi) or P(xi) = The probability that the random variable X taken on the value xi.
P( ) =Probability mass function.

Binomial probability distribution = The number of ‘heads’ when tossing a coin n times;
probability of saying ‘yes’ in a 2AFC task.
Poisson distribution = Number of α particles emitted by a radioactive source; number of
spikes generation by a neuron.

P(X=x) or p(x) = Probability density function.

Uniform probability density

Normal / Gaussion probability density function
- Standard normal distribution μ=0, σ=1
- Random variable that follows a normal distribution

Exponential probability density function

, Often used to model lifetimes or waiting times (usually x is replaced by t in that case)
Continuous probability distributions
- Are densities
Most importantly:
Cumulative probability density function
Also called CDF




Related to practice exam.


Joint probability distribution = A probability mass/density function of more than 1 variable
is called a joint probability distribution.
 Discrete: Pr(X=x and Y=y) --> P(x,y)
 Continuous: Pr(a<X<b and c<Y<d) --> p(x,y)
 If X and Y independent: P(x,y) = P(x) P(y)

Conditional probability = The probability of one variable X for given value of the other
variable Y.
Pr(X|Y=y) (Say probability X “given” Y=y)
It is clearly related to the joint probability with proper value of Y substituted P(X|Y) ∝
P(X,Y=y) .

Discrete:

Continuous:




Likelihood reflects sensory information.
Is a function of hypotheses
Likelihood p(observation | hypothesis)
Prior reflects prior knowledge about hypotheses.
Is independent of observations.
Posterior reflects belief in hypotheses.

, It takes prior knowledge into account.




Lecture 3

Bayes rule:
Interpretation

Considering a robot that wants to know whether a door is
open or not. Then:
P(open|z) is diagnostic
P(z|open) is causal
Often causal knowledge is easier to obtain.
Bayes rule relates causal and diagnostic knowledge in:

If z is updated, we get z1, z2 etc.
According to Markov assumption, zn is independent
of z1, …, zn-1 if we know x.




Often the world is dynamic since:
• Actions carried out by the robot,
• Actions carried out by other agents
• Or just the time passing by change the world.

Actions are never carried out with absolute certainty. They generally increase uncertainty.
To incorporate the outcome of an action u into the current belief, use the conditional pdf:
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
vop97

Maak kennis met de verkoper

Seller avatar
vop97 Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
8 jaar
Aantal volgers
3
Documenten
3
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen