100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Basics of CNN , all you need to know

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
10-03-2025
Geschreven in
2024/2025

This document provides a detailed overview of the basics of CNN, including its architecture and key components. It explains convolutional layers, activation functions, pooling, and fully connected layers with clear illustrations. The notes serve as a foundational guide to understanding CNNs and their applications.

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
10 maart 2025
Aantal pagina's
3
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

CONVOLUTIONAL NEURAL NETWORK


I .DISADVANTAGES OF USING ANN FOR IMAGE CLASSIFICATION
1.Too much computation - To handle variety in digits we can use simple artificial neural
network (ANN). But when you have bigger image, Eg: the image size is 1920 x 1080 x 3 ,
this nearly contains huge number of neurons and weights which is difficult to compute .
2.Treats local pixels same as pixels far apart – if you have a face of an animal in the left
corner versus right corner, it is still that animal’s face. Doesn’t matter where the face is
located.
3.Sensitive to location of an object in an image - If the pixels are moved around, it should
still able to detect the object in an image but with ANN its hard.
II. HOW HUMANS RECOGNIZE IMAGES
When we look at koala’s image we look at the features like its round eyes , black nose , fluffy
ears and we detect these features one by one. In our Brain there are different set of neurons
working on this different feature recognition of an image. These neurons are connected to
another set of neurons which will aggregate the results. If the features are eyes, nose and ears
then it is the face. And if legs and hands are recognized then it is the body part. There are
different set of neurons connected to these neurons which will again aggregate the result
saying that , if the images has koala’s head and body it means it is koala’s image .
III. HOW CAN WE MAKE COMPUTERS RECOGNIZE THESE TINY FEATURES .
We use the concept of filters. We take our original image and will apply a convolution
operation or a filter operation which results in a feature map .The benefit here is wherever
you see a number ‘1’ or a number close to it , which results in detecting a feature of an
image . “ Filters are nothing but the feature detector “ .
Location are invariant ( it can detect eyes in any location of the image ). With filters we get
different feature maps which are stacked together and they almost form a 3D volume for head
and body of the animal separately. This 3D volume is then flattened them to convert it into
1D array . These 1D arrays are joint together to make a fully connected dense neural network
for classification .
IV. WHY DO WE NEED A FULLY CONNECTED DENSE NEURAL NETWORK
HERE?
Neural networks are used to handel the variety in the inputs such that they can classify those
variety of inputs in a generic way .Feature extraction and classification are done till now but
there are 2 more components
1.ReLU operation
€6,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
kirubajayashree1909

Maak kennis met de verkoper

Seller avatar
kirubajayashree1909
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
9 maanden
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen