100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Empirical Methods

Beoordeling
-
Verkocht
-
Pagina's
10
Geüpload op
23-02-2025
Geschreven in
2024/2025

This document summarizes empirical methods in data analysis, focusing on A/B Testing, Analysis of (Co-)Variance, Regression Analysis, Cluster Analysis, and Conjoint Analysis. It includes core concepts, statistical test selection, model assumptions, decision trees, and validation checklists.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 februari 2025
Bestand laatst geupdate op
24 februari 2025
Aantal pagina's
10
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Empirical Methods - Summary
Dennis Klappe
February 24, 2025


General
Data Types and Examples
• Categorical Data: Represents distinct groups; non-numeric.
– Example: Browser type (e.g., Chrome, Firefox)
• Nominal Data: Categories without a meaningful order.
– Example: Types of cuisine (e.g., Italian, Chinese, Mexican)
– Nominal Scale: Size of number is not related to the amount of the characteristic measured.
– Example: Eye color.
• Ordinal Data: Ordered categories; unequal intervals.
– Example: Education level (e.g., Bachelor’s, Master’s)
– Ordinal Scale: Larger numbers indicate more (or less) of the characteristic, but not how much
more (or less).
– Example: Military ranks, ranking of teams in a tournament.
• Continuous Data: Numeric values within a range; measured.
– Example: Height (e.g., 175 cm)
• Ratio Scale: Contains interval properties, with a natural zero point, allowing interpretation of ratios.
– Example: Height.
• Binary Data: Two possible outcomes.
– Example: Pass/Fail
• Discrete Data: Countable numeric values; distinct.
– Example: Number of children (0, 1, 2, ...)
• Interval Scale: Contains ordinal properties, with equal differences between scale points.
– Example: Temperature [°C].

Topics Overview
• A/B Testing: Used to compare two versions (A vs. B) to determine which performs better on specific
metrics.
– Example: Comparing click-through rates between two webpage designs.
• ANOVA (Analysis of Variance): Tests for significant differences between means across 3+ groups.
– Example: Examining differences in mean test scores across multiple teaching methods.
• Regression Analysis: Models relationships between a dependent variable and one or more indepen-
dent variables.
– Example: Predicting house prices based on size, location, and age.
• Cluster Analysis: Groups observations with similar characteristics into homogeneous groups.
– Example: Segmenting customers into distinct profiles based on purchasing behavior.
• Conjoint Analysis: Determines how consumers value different attributes of a product.
– Example: Evaluating trade-offs consumers make between price and features in smartphones.


A/B Testing
Core Concept
A/B testing compares two variants (A vs. B) to determine which performs better on specific metrics.
Use it when:


1

, • Testing UI changes, pricing strategies, or marketing campaigns
• Evaluating algorithm changes or feature rollouts
• Needing statistical confidence before full implementation

Statistical Test Selection Guide
• Categorical Data (e.g., conversion rates):
– Small samples: Fisher’s Exact Test
– Large samples: Pearson’s Chi-Square Test
• Continuous Data (e.g., revenue):
– Normal distribution/large samples:
∗ Equal variances: Student’s t-test
∗ Unequal variances: Welch’s t-test
– Non-normal/small samples: Mann-Whitney U Test

Key Considerations
• Use Levene’s Test to determine equal vs. unequal variances:
– p-value > 0.05: Equal variances, use Student’s t-test
– p-value < 0.05: Unequal variances, use Welch’s t-test
• Welch’s t-test is generally preferred over Student’s t-test (more robust to unequal variances)
• Mann-Whitney tests distributions/medians, not means
• Large samples (> 30) can use t-tests via CLT even with non-normal data
• For skewed data, consider transformations or median-based analysis

Decision Tree
1. Categorical outcome?
• Small sample → Fisher’s Exact
• Large sample → Chi-Square
2. Continuous outcome?
• Normal/large sample:
– Equal variances → Student’s t-test
– Unequal variances → Welch’s t-test
• Non-normal/small sample → Mann-Whitney


Analysis of (Co-)Variance
Core Concept
• ANOVA: Tests differences between 3+ group means
• ANCOVA: ANOVA with continuous control variables (covariates)
• Sum of Squares (SS):
– SS Total: Total variance in the data.
Interpretation: High SS Total indicates high overall variability in your data.
– SS Between: Variance due to differences between group means.
Interpretation: High SS Between means greater differences between groups, potentially significant
if the F-statistic is also high.
– SS Within: Variance within groups, capturing unaccounted variance.
Interpretation: High SS Within suggests more variability within each group, which can reduce the
likelihood of finding significant between-group effects.
– SS Covariate (ANCOVA): Variance explained by covariates.
Interpretation: High SS Covariate indicates that covariates account for a significant portion of the
variance, improving the analysis by controlling for confounders.
• Key output: F-statistic F = Between-group variance
Within-group variance
– Interpretation:
∗ High F-value: Greater between-group variance compared to within-group variance, indicating
significant differences.


2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
d3nnis Universiteit Twente
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
21
Lid sinds
11 maanden
Aantal volgers
0
Documenten
2
Laatst verkocht
1 week geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen