100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

CALCULUS FINAL EXAM REVIEW QUESTIONS WITH COMPLETE SOLUTIONS

Beoordeling
-
Verkocht
-
Pagina's
6
Cijfer
A+
Geüpload op
17-02-2025
Geschreven in
2024/2025

CALCULUS FINAL EXAM REVIEW QUESTIONS WITH COMPLETE SOLUTIONS

Instelling
Calculus
Vak
Calculus









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Calculus
Vak
Calculus

Documentinformatie

Geüpload op
17 februari 2025
Aantal pagina's
6
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

CALCULUS FINAL EXAM REVIEW
QUESTIONS WITH COMPLETE
SOLUTIONS
Section 1.5 What is the equation for an exponential function? - ANSWER-P(t)= p0a^t

Section 1.5 What is the equation for an exponential function that is compounded per
period? - ANSWER-P(t)=p0(1+r/n)^(nt)

Section 1.5 What is the equation for an exponential function that is compounded
continuously? - ANSWER-P(t)=Pe^(rt)

Section 1.5 If you were to be given the continuous rate of a function, how can you find
the effective rate? - ANSWER-e^r-1

Section 1.5 If you were to be given the compounded per period rate of a function, how
can you find the effective rate? - ANSWER-(1+r/n)^(n)-1

Section 1.6 natural log rules: multiplying ln, dividing ln, ln raised to a power, ln with e, ln
(1), and x raised to the zero power. - ANSWER-multiplying ln: ln(AB)= ln(A)+ln(B)
dividing ln: ln(A/B)= ln(A)-ln(B)
ln raised to a power: ln(A^p)=p(ln(A))
ln with e: ALWAYS CANCELS OUT ln(e^x) or e^lnx
ln(1)= 0
x^0= 1

Section 1.7 What do we call it when you want to find the time that will give you twice the
initial amount you started with? - ANSWER-Doubling time

Section 1.7 What do we call it when you want to find the time that will give you half the
amount you started with? - ANSWER-Half-life

Section 1.7 How do we find the present value of an exponential function that is
compounded continuously? - ANSWER-PV=Be^-rt

Section 1.7 How do we find the present value of an exponential function that is
compounded "n" times per year? - ANSWER-PV=B(1+r/n)^(-nt)

Section 1.9 How do we know if a function is a power function? - ANSWER-When it can
be written as y=k*x^p.

Section 1.9 When given a power function, if the two things are directly proportional,
what would the equation be? - ANSWER-thing1=k*thing2

, Section 1.9 When given a power function, if the two things are inversely proportional,
what would the equation be? - ANSWER-thing1=k/thing2

Section 2.2 What is the instantaneous rate of change? - ANSWER-The instantaneous
rate of change is just the derivative.

Section 2.2 If we know that f(x) is increasing, what can we tell about f'(x)? - ANSWER-if
f(x) is increasing then f'(x) is positive.

Section 2.2 If we know that f(x) is decreasing, what can we tell about f'(x)? - ANSWER-if
f(x) is decreasing then f'(x) is negative.

Section 2.2 If we know that the slope of the function is zero, what can we tell about f'(x)?
- ANSWER-if f(x) is zero then f'(x) is also zero.

Section 2.2 If we know that f(x) is concave up, what can we tell about the first and
second derivative? - ANSWER-if f(x) is concave up then f'(x) is increasing and f"(x) is
positive.

Section 2.2 If we know that f(x) is concave down, what can we tell about the first and
second derivative? - ANSWER-if f(x) is concave down then f'(x) is decreasing and f"(x)
is negative.

Section 2.2 If we know that the first derivative is concave up, what can we tell about the
second derivative? - ANSWER-if f'(x) is concave up then f"(x) is increasing.

Section 2.2 If we know that the first derivative is concave down, what can we tell about
the second derivative? - ANSWER-if f'(x) is concave down then f"(x) is decreasing.

Section 2.3 What is the equation for local linear approximation? - ANSWER-f(a+h)=f(a)
+h(f'(a))

Section 2.5 How do we know when profit is maximized? - ANSWER-Profit is maximized
when the marginal revenue equals the marginal cost.

Section 2.5 What happens when marginal revenue exceeds marginal cost? - ANSWER-
You are underproducing.

Section 2.5 What happens when marginal revenue is less than marginal cost? -
ANSWER-You are overproducing.

Section 3.1-3.4 How do we find the derivative of these formulas?
constant rule: f(x)=k
power rule: f(x)=x^k
exponential rule: f(x)=k^x
€12,72
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biggdreamer Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
248
Lid sinds
2 jaar
Aantal volgers
68
Documenten
17956
Laatst verkocht
1 week geleden

4,0

38 beoordelingen

5
22
4
4
3
6
2
2
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen