100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Nuclear Energy, Eighth Edition Solutions to Exercises Raymond L. Murray/ Complete Solved Questions to all chapters, A+ Graded.

Beoordeling
4,8
(4)
Verkocht
9
Pagina's
122
Cijfer
A+
Geüpload op
13-02-2025
Geschreven in
2024/2025

This is a complete solutions Manual to Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Eighth Edition [8th Ed]. An Original Complete Updated PDF file, 100% helping you to pass your Exams.

Meer zien Lees minder
Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
13 februari 2025
Aantal pagina's
122
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Nuclear Energy, Eighth Edition

Solutions to Exercises

Raymond L. Murray
North Carolina State University

Keith E. Holbert
Arizona State University
Tempe, AZ 85287-5706



Please do not make these solutions publicly accessible, online or otherwise. The author
welcomes corrections and suggestions for improvements, additions, and deletions. Since
Microsoft deleted the classic Equation Editor in January 2018, the MathType font must be
installed to view some equations correctly, (https://www.dessci.com/en/dl/fonts/getfont.asp).


Chapter 1 – Energy

1.1 m = 75 kg; v = 8 m/s; EK = ½mv2 = (0.5)(75 kg)(8 m/s)2 = 2400 J

1.2 C = (5/9)(F – 32), F = (9/5)C + 32
(a) C = (5/9)(68 °F – 32) = 20 °C
(b) C = (5/9)(500 °F – 32) = 260 °C
(c) F = (9/5)(–273 °C) + 32 = –459.4 °F
(d) F = (9/5)(1000 °C) + 32 = 1832 °F
(e) F = (9/5)(–40 °C) + 32 = –40 °F
(f) C = (5/9)(212 °F – 32) = 100 °C

1.3 cp = 450 J/(kg·°C), m = 0.5 kg, ΔT = 100 °C
Q = m cp ΔT = (0.5 kg)(450 J/(kg·°C))(100 °C) = 22,500 J = 22.5 kJ

1.4 Molecular weight 28, m = (28 amu)(1.66 × 10–27 kg/amu) = 4.65 × 10–26 kg
At 20 °C, E = 6.07 × 10–21 J, from Example 1.3
v  2 E / m  2 (6.07  10 21 J ) (4.65  10 26 kg )  511 m/s

1.5 Conversion factor (Appendix): 1 hp = 745.7 W
P = (200 hp)(745.7 W/hp) = 149,140 W  149 kW
E = (149 kW)(4 h) = 596 kWh

1.6 (a) ν = c/λ = (3.0 × 108 m/s) / (1.5 × 10–12 m) = 2 × 1020 Hz
(b) ν = c/λ = (3.0 × 108 m/s) / (0.10 × 10–9 m) = 3 × 1018 Hz

1.7 (a) m/m0 = 1/[1  (v/c)2]1/2


1

,Nuclear Energy Chapter 21 – Reactor Safety and Security


series expansion: (1 + x)n = 1 + nx + ...
Let n = –1/2, x =  (v/c)2
m/m0 = 1/[1  (v/c)2]1/2  1 + 1/2 (v/c)2
EK = (m  m0)c2 = m0(m/m0  1)c2 = (1/2)m0v2 q.e.d.
(b) m0 = 1000 kg, v = 20 m/s, c = 3 × 108 m/s
Δm = EK /c2  (1/2)(m0)(v/c)2 = (1/2)(1000 kg)[(20 m/s)/(3 × 108 m/s)]2
Δm = 2.22 × 10–12 kg = 2.22 × 10–9 g

1.8 E = (190 × 106 eV)(1.60 × 10–19 J/eV) = 3.04 × 10–11 J

1.9 m = E/c2 = (3.04 × 10–11 J) / (3 × 108 m/s)2 = 3.38 × 10–28 kg

1.10 m = (235 u)(1.66 × 10–27 kg/u) = 3.90 × 10–25 kg
E = mc2 = (3.90 × 10–25 kg)(3 × 108 m/s)2 = 3.51 × 10–8 J

1.11 kilogram fraction: (3.38 × 10–28 kg) / (3.90 × 10–25 kg) = 8.67 × 10–4
joule fraction: (3.04 × 10–11 J) / (3.51 × 10–8 J) = 8.66 × 10–4
MeV fraction: (190 MeV) / [(235)(931.5 MeV)] = 8.68 × 10–4
(differences due to rounding)

1.12 [F (fissions/s)](190 MeV/fission)(1.60 × 10–13 J/MeV) = 1 W
F = (1 J/s)/(3.04 × 10–11 J/fission) = 3.29 × 1010 fissions/s  3.3 × 1010 /s

1.13 (a) E0 = mpc2 = (1.673 × 10–27 kg)(2.998 × 108 m/s)2/(1.602 × 10–13 J/MeV) = 938.6 MeV
(b) E0 = mnc2 = (1.675 × 10–27 kg)(2.998 × 108 m/s)2/(1.602 × 10–13 J/MeV) = 939.8 MeV
These values differ from Table A.2 in a manner proportionate to the number of
significant digits used.

1.14 E = mc2 = (1.6605389 × 10–27 kg)(299792458 m/s)2(1 MeV/1.602176565 × 10–13 J)
= 931.49 MeV

1.15 (a) E = mc2, E0 = m0c2, ΔE = (m  m0)c2
ΔE/E0 = m/m0  1 = [1  (v/c)2]–1/2  1
(1 + ΔE/E0)2 = [1 (v/c)2]–1
(v/c)2 = 1  1/(1 + ΔE/E0)2
v/c = [1  (1 + ΔE/E0)–2]1/2
(b) ΔE/E0 = 0.01, v/c = [1  (1.01)–2]1/2 = 0.140
ΔE/E0 = 0.1, v/c = [1  (1.1)–2]1/2 = 0.417
ΔE/E0 = 1, v/c = [1  (2)–2]1/2 = 0.866

1.16 (a) (34.18 kcal/g)(454 g/lb)/(0.252 kcal/Btu) = 6.16 × 104 Btu/lb
(b) (34.18 kcal/g)(1000 cal/kcal)(4.184 J/cal) = 1.43 ×105 J/g
(c) MH = 2.016 g/mol, molecular weight of H2
NA = 6.022 × 1023 molecules/mol, Avogadro’s number
NA/MH = 2.987 × 1023, number of H2 molecules per gram
H = heat of combustion per molecule


2

,Nuclear Energy Chapter 21 – Reactor Safety and Security


= (1.43 × 105 J/g) / [(1.60 × 10–19 J/eV)(2.987 × 1023 molecules/g)]
H  3.0 eV/molecule

m0 c 2  1 
2 2
1.17 E K  ET E 0  m c m0 c  m0 c 2  m0 c 2  1
1 (v 2 c 2 )  2 2
 1 (v c )  
2
EK 1 v  1 1
1 2
  1    2
 v  c 1 2
m0 c 1 (v 2 c 2 ) c   E K   EK 

1  1 
 2   2 
 m0 c   m0 c 

1.18 Graph of error in using classic rather than relativistic EK equation
Error = [EK(classic) – EK(relat.)] (100%) / EK(relat.)
0
Error Using Classic Expression (%)




-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
0 0.2 0.4 0.6 0.8 1
Fraction of the Speed of Light, v/c


1.A Sampling of ALBERT results:
(a) Electron at 0.5c: Ratio of mass to rest mass is 1.1547
(b) Proton of 1000 MeV total energy: Kinetic energy is 9.8899e-012 J, or 61.728 MeV
(c) Neutron of 0.025 eV kinetic energy: Momentum is 3.663e-024 kg-m/sec
(d) Deuteron with m/m0 = 1.01: Velocity is 42082095.5242 m/sec
(e) Alpha with momentum 10–19 kg·m/s: Relativistic mass is 6.653e-027 kilograms


Chapter 2 – Atoms and Nuclei

2.1 Density of graphite ρC = 1.65 g/cm3, molecular weight MC = 12.011
NC = ρC NA/MC = (1.65 g/cm3)(6.022×1023 atoms/mol)/(12.011 g/mol) = 8.273 × 1022/cm3
(a) NC-12 = γC-12 NC = (0.988922)(8.273 × 1022/cm3) = 8.181 × 1022/cm3
(b) NC-13 = γC-13 NC = (0.011078)(8.273 × 1022/cm3) = 9.165 × 1020/cm3

2.2 N = ρ NA/M = (19.3 g/cm3)(6.022 × 1023 atoms/mol)/(197 g/mol) = 0.0590 × 1024/cm3
Side of cube s such that s3 = 1, so that
s = 1/N1/3 = 1/(59.0 × 1021)1/3 = 2.57 × 10–8 cm
Equal volumes means s3 = (4/3)πr3 or r = [3/(4π)]1/3s


3

, Nuclear Energy Chapter 21 – Reactor Safety and Security


r = (0.620)(2.57 × 10–8 cm) = 1.59 × 10–8cm
V = s3 = (2.57 × 10–8 cm)3 = 1.70 × 10–23 cm3

2kT 2 (1.38  10 23 J/K ) (293 K )
2.3 (a) v p    2200 m/s
mn 1.675  10 27 kg
2kT 2 (1.38  1023 J/K) (500  273K)
(b) v p    3570 m/s
mn 1.675  1027 kg

2.4 Average energy per molecule (3/2)kT
Total energy for N molecules E = (3/2)NkT
Add energy ΔE = (3/2)NkΔT which is also ΔE = cVNmΔT from basic heat concepts,
where cV = specific heat and m = mass of molecule. Equating, (3/2)k = cVm or
cV = (3/2)(k/m) q.e.d.

2.5 For elemental helium, which is almost entirely comprised of He-4:
3k (3)(1.3806  10 23 J/K )
cV    3116 J/(kg·K)
2 m (2)(4.0026 amu)(1.6605  10 27 kg/amu)

2.6 (a) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (280×10–9 m) = 4.43 eV
(b) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (1.5×10–12 m) = 8.27×105 eV
(c) E = h ν = h c / λ = (4.1357×10–15 eV·s)(2.998×108 m/s) / (0.1×10–9 m) = 1.24×104 eV

2.7 Energy E1 = (13.6 eV)(1.602 × 10–19 J/eV) = 2.18 × 10–18 J
Frequency ν = E/h = (2.18 × 10–18 J) / (6.63 × 10–34 J·s) = 3.29 × 1015 Hz

2.8 E3 = E1 /(3)2 = –13.6/9 = –1.51 eV
R3 = (3)2 R1 = 9 (0.53 × 10–10 m) = 4.77 × 10–10 m = 4.77 × 10–8 cm
ΔE = E3  E1 = –1.5  (–13.6) = (12.1 eV)(1.60 × 10–19 J/eV) = 1.94 × 10–18 J
ν = ΔE/h = (1.94 × 10–18 J) / (6.63 × 10–34 J·s) = 2.92 × 1015 Hz

2.9 Carbon-14: Z = 6, A = 14
Numbers: electrons 6, protons 6, neutrons 8
Electrons in orbits: inner 2, outer 4




4
€14,99
Krijg toegang tot het volledige document:
Gekocht door 9 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 4 reviews worden weergegeven
3 maanden geleden

5 maanden geleden

5 maanden geleden

6 maanden geleden

4,8

4 beoordelingen

5
3
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Topscorer london
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
107
Lid sinds
5 jaar
Aantal volgers
12
Documenten
454
Laatst verkocht
1 week geleden
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4,3

23 beoordelingen

5
15
4
3
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen