100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Antwoorden

MATH 101 Webwork 7 Homework Questions and Answers PDF from 2020

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
25-05-2020
Geschreven in
2019/2020

This is a pdf copy of the webwork 6 questions and answers for math 101 at ubc. Note that the exact numbers will be different for you but this provides insight into solving your problems nonetheless. Plus there is always the chance that the same questions are asked of you:) You can use this to help you over the term or even better to get a head start before entering your first year!

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 mei 2020
Aantal pagina's
6
Geschreven in
2019/2020
Type
Antwoorden
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Nikita Sharma 2019W2 MATH 101 209
Assignment Homework 7 due 9/12/14 at 9pm



and, for i = 0, . . . , 8,
1. (1 point) Given the following graph of the function iπ
y = f (x) and n = 6, answer the following questions about the xi = i∆x = ,
48
area under the curve from x = 0 to x = 6.
so that  

f (xi ) = f (i∆x) = sec2 .
48
Therefore,
      
π/48 2 2 π 2 2π 2 3π
T8 = sec (0)+2 sec +2 sec +2 sec +2 s
2 48 48 48

R π/6
Similarly, we estimate the integral 0 sec2 x dx using the
Midpoint Rule with 8 subdivisions, namely
        
x0 + x1 x0 + x1 x1 + x2 x2 + x3
M8 = ∆x f +f +f +f +
2 2 2 2
1. Use the Trapezoidal Rule to estimate the area. In our case, we obtain
Answer: T6 =
         
π 2 π 2 3π 2 5π 2 7π 2
2. Use Simpson’s Rule to estimate the area. T8 = sec +sec +sec +sec +sec
48 96 96 96 96
Answer: S6 = Correct Answers:
• 0.577899396
Note: You can click on the graph to enlarge the image. • 0.577075882

Correct Answers: 3. (1 point)
• 1/2*(2*1+2*3+2*1+2*0.5+2)+1*6
Approximate the following integral using the indicated meth-
• 1/3*(4*1+2*3+4*1+2*0.5+2)+1*6 ods. Leave your answers in ”calculator-ready” form.
Z 1
2
2. (1 point) e−3x dx
Calculate the integral approximations T8 (with the Trapezoid 0
Rule) and M8 (with the Midpoint Rule) for (a) Trapezoidal Rule with 4 subintervals
R π/6
0 sec2 x dx.
Leave your answers in calculator-ready form.
T8 = (b) Midpoint Rule with 4 subintervals


M8 = (c) Simpson’s Rule with 4 subintervals
2
(d) With f (x) = e−3x , It can be shown by direct computation
Solution: that | f (4) (x)| ≤ 108 on the interval [0, 1]. Using this information
Solution: and the error formula:
2
We have f (x) = sec x. We first estimate the integral M(b − a)5
E(n) ≤ ,
180n4
R π/6
0 sec2 x dx using the Trapezoid Rule with 8 subdivisions,
namely what is the least value of n so that the Simpson’s Rule approx-
imation for the given  integral is guaranteed to be accurate to
∆x
T8 = f (x0 )+2 f (x1 )+2 f (x2 )+2 f (x3 )+2 f (x4 )+2 f (x5 )+2 f (x6within
)+2 f (x 0.00001?
7 )+ f (x8 . answer must be a whole number.)
(Your
)
2
Since n = 8, we have n=
π/8 − 0 π Correct Answers:
∆x = = • 0.502817651253163
8 48
1

, • 0.505095217095571 The left Rule with n = 6 is
• 0.504213520516726 h i
• 16 L6 = ∆x f (x0 ) + f (x1 ) + f (x2 ) + f (x3 ) + f (x4 ) + f (x5 )
h i
= 2 f (0) + f (2) + f (4) + f (6) + f (8) + f (10)
h i
≈ 2 8 + 7.9 + 7.6 + 7.0 + 6.2 + 5.2
≈ 83.8
4. (1 point) Use six rectangles to find an estimate of each type
for the area under the given graph of f from x = 0 to x = 12.
2. Because the function is concave down, the Left Sum is
an overestimate. (This is also apparent from the picture).

3. The function together with the rectangles for the Right
Rule is plotted below. We use the picture to estimate the values
of the function at the required values of x.




1. Take the sample points from the left-endpoints.
Answer: L6 =
The Right Sum with n = 6 is
2. Is your estimate L6 an underestimate or overestimate of h i
the true area? R6 = ∆x f (x1 ) + f (x2 ) + f (x3 ) + f (x4 ) + f (x5 ) + f (x6 )
• Choose one h i
= 2 f (2) + f (4) + f (6) + f (8) + f (10) + f (12)
• Underestimate h i
• Overestimate ≈ 2 7.9 + 7.6 + 7.0 + 6.2 + 5.2 + 4.0
3. Take the sample points from the right-endpoints. ≈ 75.8
Answer: R6 =
4. Is your estimate R6 an underestimate or overestimate of
the true area? 4. Because the function is concave down, the Right Sum is
• Choose one an underestimate. (This is also apparent from the picture).
• Underestimate
• Overestimate 5. The function together with the rectangles for the mid-
point Rule is plotted below. We use the picture to estimate the
5. Take the sample points from the midpoints.
values of the function at the required values of x.
Answer: M6 =

Note: You can click on the graph to enlarge the image.

Solution:
SOLUTION
12
We have a = 0, b = 12 and n = 6. So ∆x = b−a n = 6 = 2, x +x
The midpoints are x̄k = k−12 k , k = 1, 2, . . . , 6.
and xk = a + k∆x so
The Midpoint Sum with n = 6 is
x0 = 0, x1 = 2 , x2 = 4, x3 = 6, x4 = 8, x5 = 10 and x6 = 12. h i
M6 = ∆x f (x̄1 ) + f (x̄2 ) + f (x̄3 ) + f (x̄4 ) + f (x̄5 ) + f (x̄6 )
1. The function together with the rectangles for the Left h i
= 2 f (1) + f (3) + f (5) + f (7) + f (9) + f (11)
Rule is plotted below. We use the picture to estimate the values h i
of the function at the required values of x. ≈ 2 8.0 + 7.8 + 7.3 + 6.6 + 5.8 + 4.6
≈ 80.1
Correct Answers:
• 83.7778
• Overestimate
• 75.7778
• Underestimate
2
€9,72
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
new2282307660

Maak kennis met de verkoper

Seller avatar
new2282307660 University of British Columbia
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1
Lid sinds
5 jaar
Aantal volgers
1
Documenten
14
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen