100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Linear Algebra and Its Applications 6th Edition, Global Edition Solutions Complete.

Beoordeling
3,8
(4)
Verkocht
5
Pagina's
423
Geüpload op
05-02-2025
Geschreven in
2024/2025

Linear Algebra and Its Applications, Global Edition Solutions 6th edition Q&A's

Instelling
Linear Algebra And Its Applications
Vak
Linear Algebra and Its Applications











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Linear Algebra and Its Applications
Vak
Linear Algebra and Its Applications

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
5 februari 2025
Bestand laatst geupdate op
5 februari 2025
Aantal pagina's
423
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1.1 SOLUTIONS

Notes: The key exercises are 7 (or 11 or 12), 19–22, and 25. For brevity, the symbols R1, R2,…, stand for
row 1 (or equation 1), row 2 (or equation 2), and so on. Additional notes are at the end of the section.

x1 + 5 x2 = 7  1 5 7
1.  −2
−2 x1 − 7 x2 = −5  −7 −5
x1 + 5 x2 = 7 1 5 7
Replace R2 by R2 + (2)R1 and obtain: 0
3x2 = 9  3 9 
x1 + 5 x2 = 7 1 5 7
Scale R2 by 1/3: 0
x2 = 3  1 3 
x1 = −8 1 0 −8
Replace R1 by R1 + (–5)R2: 0
x2 = 3  1 3
The solution is (x1, x2) = (–8, 3), or simply (–8, 3).

2 x1 + 4 x2 = −4 2 4 −4 
2. 5
5 x1 + 7 x2 = 11  7 11 
x1 + 2 x2 = −2 1 2 −2 
Scale R1 by 1/2 and obtain: 5
5 x1 + 7 x2 = 11  7 11 
x1 + 2 x2 = −2 1 2 −2 
Replace R2 by R2 + (–5)R1: 0
−3x2 = 21  −3 21
x1 + 2 x2 = −2 1 2 −2 
Scale R2 by –1/3: 0
x2 = −7  1 −7 
x1 = 12 1 0 12 
Replace R1 by R1 + (–2)R2: 0
x2 = −7  1 −7 
The solution is (x1, x2) = (12, –7), or simply (12, –7).




1
Complete Updated SM

,2 CHAPTER 1 • Linear Equations in Linear Algebra


3. The point of intersection satisfies the system of two linear equations:
x1 + 5 x2 = 7 1 5 7
x1 − 2 x2 = −2 1 −2 −2 

x1 + 5 x2 = 7 1 5 7
Replace R2 by R2 + (–1)R1 and obtain: 0
−7 x2 = −9  −7 −9 
x1 + 5 x2 = 7 1 5 7 
Scale R2 by –1/7: 0
x2 = 9/7  1 9/7 
x1 = 4/7 1 0 4/7 
Replace R1 by R1 + (–5)R2: 0
x2 = 9/7  1 9/7 
The point of intersection is (x1, x2) = (4/7, 9/7).

4. The point of intersection satisfies the system of two linear equations:
x1 − 5 x2 = 1 1 −5 1
3x1 − 7 x2 = 5 3 −7 5

x1 − 5 x2 = 1 1 −5 1
Replace R2 by R2 + (–3)R1 and obtain: 0
8 x2 = 2  8 2 
x1 − 5 x2 = 1 1 −5 1
Scale R2 by 1/8: 0
x2 = 1/4  1 1/4 
x1 = 9/4 1 0 9/4 
Replace R1 by R1 + (5)R2: 0
x2 = 1/4  1 1/4 
The point of intersection is (x1, x2) = (9/4, 1/4).

5. The system is already in “triangular” form. The fourth equation is x4 = –5, and the other equations do not
contain the variable x4. The next two steps should be to use the variable x3 in the third equation to
eliminate that variable from the first two equations. In matrix notation, that means to replace R2 by its
sum with 3 times R3, and then replace R1 by its sum with –5 times R3.

6. One more step will put the system in triangular form. Replace R4 by its sum with –3 times R3, which
 1 −6 4 0 −1
0 2 −7 0 4
produces   . After that, the next step is to scale the fourth row by –1/5.
0 0 1 2 −3
 
0 0 0 −5 15

7. Ordinarily, the next step would be to interchange R3 and R4, to put a 1 in the third row and third column.
But in this case, the third row of the augmented matrix corresponds to the equation 0 x1 + 0 x2 + 0 x3 = 1,
or simply, 0 = 1. A system containing this condition has no solution. Further row operations are
unnecessary once an equation such as 0 = 1 is evident.
The solution set is empty.




Complete Updated SM

, 1.1 • Solutions 3


8. The standard row operations are:
1 −4 9 0  1 −4 9 0  1 −4 0 0  1 0 0 0
0 1 7 0  ~ 0 1 7 0  ~  0 1 0 0  ~  0 1 0 0

 0 0 2 0  0 0 1 0   0 0 1 0   0 0 1 0
The solution set contains one solution: (0, 0, 0).

9. The system has already been reduced to triangular form. Begin by scaling the fourth row by 1/2 and then
replacing R3 by R3 + (3)R4:
1 −1 0 0 −4   1 −1 0 0 −4   1 −1 0 0 −4 
0 1 −3 0 −7   0 1 −3 0 7  0 1 −3 0 −7 
 ~ ~ 
0 0 1 −3 −1  0 0 1 −3 −1 0 0 1 0 5
     
0 0 0 2 4 0 0 0 1 2 0 0 0 1 2
Next, replace R2 by R2 + (3)R3. Finally, replace R1 by R1 + R2:
1 −1 0 0 −4   1 0 0 0 4
0 1 0 0 8  0 1 0 0 8
~ ~ 
0 0 1 0 5  0 0 1 0 5
   
0 0 0 1 2 0 0 0 1 2
The solution set contains one solution: (4, 8, 5, 2).

10. The system has already been reduced to triangular form. Use the 1 in the fourth row to change the
–4 and 3 above it to zeros. That is, replace R2 by R2 + (4)R4 and replace R1 by R1 + (–3)R4. For the
final step, replace R1 by R1 + (2)R2.
1 −2 0 3 −2   1 −2 0 0 7  1 0 0 0 −3
0 1 0 −4 7  0 1 0 0 −5  0 1 0 0 −5
 ~ ~ 
0 0 1 0 6 0 0 1 0 6 0 0 1 0 6
     
0 0 0 1 −3 0 0 0 1 −3  0 0 0 1 −3
The solution set contains one solution: (–3, –5, 6, –3).

11. First, swap R1 and R2. Then replace R3 by R3 + (–3)R1. Finally, replace R3 by R3 + (2)R2.
 0 1 4 −5  1 3 5 −2   1 3 5 −2   1 3 5 −2
 1 3 5 −2  ~ 0 1 4 −5 ~ 0 1 4 −5 ~  0 1 4 −5
    
 3 7 7 6   3 7 7 6  0 −2 −8 12   0 0 0 2
The system is inconsistent, because the last row would require that 0 = 2 if there were a solution.
The solution set is empty.

12. Replace R2 by R2 + (–3)R1 and replace R3 by R3 + (4)R1. Finally, replace R3 by R3 + (3)R2.
 1 −3 4 −4   1 −3 4 −4   1 −3 4 −4 
 3 −7 
7 −8 ~  0 2 −5  
4 ~ 0 2 −5 4 

 −4 6 −1 7   0 −6 15 −9  0 0 0 3
The system is inconsistent, because the last row would require that 0 = 3 if there were a solution.
The solution set is empty.




Complete Updated SM

, 4 CHAPTER 1 • Linear Equations in Linear Algebra


1 0 −3 8  1 0 −3 8  1 0 −3 8  1 0 −3 8
13.  2 2 9 7  ~  0 2 15 −9  ~ 0 1 5 −2  ~  0 1 5 −2 

 0 1 5 −2   0 1 5 −2  0 2 15 −9   0 0 5 −5
1 0 −3 8  1 0 0 5
~  0 1 5 −2  ~ 0 1 0 3 . The solution is (5, 3, –1).
 0 0 1 −1 0 0 1 −1

 1 −3 0 5  1 −3 0 5  1 −3 0 5  1 −3 0 5
14.  −1 1 5 2  ~ 0 −2 5 7  ~  0 1 1 0  ~  0 1 1 0

 0 1 1 0  0 1 1 0   0 −2 5 7   0 0 7 7 
1 −3 0 5  1 −3 0 5  1 0 0 2
~  0 1 1 0  ~ 0 1 0 −1 ~  0 1 0 −1 . The solution is (2, –1, 1).
 0 0 1 1 0 0 1 1  0 0 1 1

15. First, replace R4 by R4 + (–3)R1, then replace R3 by R3 + (2)R2, and finally replace R4 by R4 + (3)R3.
1 0 3 0 2  1 0 3 0 2
0 1 0 −3 3   0 1 0 −3 3
 ~ 
 0 −2 3 2 1  0 −2 3 2 1
   
3 0 0 7 −5  0 0 −9 7 −11
1 0 3 0 2  1 0 3 0 2
0 1 0 −3 3  0 1 0 −3 3
~ ~ 
0 0 3 −4 7  0 0 3 −4 7
   
0 0 −9 7 −11 0 0 0 −5 10 
The resulting triangular system indicates that a solution exists. In fact, using the argument from Example 2,
one can see that the solution is unique.

16. First replace R4 by R4 + (2)R1 and replace R4 by R4 + (–3/2)R2. (One could also scale R2 before
adding to R4, but the arithmetic is rather easy keeping R2 unchanged.) Finally, replace R4 by R4 + R3.
 1 0 0 −2 −3  1 0 0 −2 −3
 0 2 2 0 0  0 2 2 0 0
 ~ 
 0 0 1 3 1 0 0 1 3 1
   
 −2 3 2 1 5 0 3 2 −3 −1
1 0 0 −2 −3  1 0 0 −2 −3
0 2 2 0 0 0 2 2 0 0
~ ~ 
0 0 1 3 1 0 0 1 3 1
   
0 0 −1 −3 −1 0 0 0 0 0
The system is now in triangular form and has a solution. The next section discusses how to continue with
this type of system.




Complete Updated SM
€15,34
Krijg toegang tot het volledige document:
Gekocht door 5 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 4 reviews worden weergegeven
8 maanden geleden

8 maanden geleden

Illegal

9 maanden geleden

9 maanden geleden

3,8

4 beoordelingen

5
2
4
1
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Topscorer london
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
107
Lid sinds
5 jaar
Aantal volgers
12
Documenten
454
Laatst verkocht
1 week geleden
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4,3

23 beoordelingen

5
15
4
3
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen