100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Overig

Challenges in Machine Learning and Artificial Intelligence: Overcoming Barriers to Progress

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
31-01-2025
Geschreven in
2024/2025

This document explores the major challenges in machine learning and artificial intelligence, such as data quality, bias in AI, model interpretability, and overfitting/underfitting. It also discusses issues related to scalability, ethics, and the limitations of current AI technologies, offering insights into overcoming these barriers for better AI development.

Meer zien Lees minder
Instelling
Vak

Voorbeeld van de inhoud

Challenges in Machine Learning and Artificial
Intelligence
While Machine Learning (ML) and Artificial Intelligence (AI) have made significant
strides in recent years, there are still numerous challenges that need to be
addressed for further advancements. These challenges span from technical and
ethical considerations to issues related to data quality, model interpretability, and
computational power.



1. Data Quality and Quantity
Data is the backbone of machine learning and AI models. The quality and quantity
of data directly impact the accuracy and performance of these models.

 Insufficient Data: Machine learning models require large amounts of
labeled data for training, especially for deep learning. In many fields, there
is a scarcity of high-quality labeled data, which can hinder model
performance.
 Noisy Data: Real-world data is often noisy and contains errors, which can
cause machine learning models to make incorrect predictions. Cleaning and
preprocessing data to remove inconsistencies is an essential, yet
challenging, task.
 Data Imbalance: In many real-world applications, the data might not be
equally distributed across different classes. For example, in a fraud
detection model, fraudulent transactions may be much rarer than
legitimate ones. This imbalance can lead to biased models, where the
model is more likely to predict the majority class, overlooking the minority
class.
 Privacy Concerns: The use of personal and sensitive data for AI/ML
applications raises significant privacy concerns. Collecting, storing, and
using data responsibly while maintaining user privacy is a challenge.

, 2. Model Interpretability and Transparency
Deep learning and other AI models are often referred to as "black-box" systems
because their decision-making processes are not easily interpretable by humans.
This lack of transparency poses several issues:

 Trust: In critical applications such as healthcare, finance, and autonomous
driving, stakeholders need to trust AI systems. If a model’s decision-making
process cannot be easily understood or explained, it becomes harder to
trust the results.
 Accountability: When AI systems make mistakes or cause harm, it becomes
difficult to assign responsibility if the model's behavior is not interpretable.
 Explainability: Developing techniques that explain why a model made a
specific decision is crucial, especially in regulated industries, where
understanding the rationale behind AI decisions is necessary.



3. Ethical and Bias Issues
AI and machine learning models can inadvertently perpetuate or amplify biases
present in the data they are trained on, leading to unfair and unethical outcomes.

 Bias in Training Data: If the data used to train a model contains biases, the
model will likely replicate those biases. For example, facial recognition
systems trained primarily on images of white people may perform poorly
when trying to recognize individuals of other races.
 Discrimination: ML models used in hiring, lending, or criminal justice
decisions can perpetuate discrimination if not properly monitored. For
instance, biased training data can lead to AI systems favoring certain
demographic groups over others.
 Ethical Dilemmas: AI systems used for surveillance, decision-making, and
autonomous weapons pose ethical dilemmas. Determining what is
acceptable and ethical in AI applications is a challenge for policymakers,
technologists, and society at large.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
31 januari 2025
Aantal pagina's
6
Geschreven in
2024/2025
Type
Overig
Persoon
Onbekend

Onderwerpen

€6,54
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
rileyclover179

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
rileyclover179 US
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
252
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen