100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Full summary math, pre master finance (116 pages)

Beoordeling
3,0
(1)
Verkocht
3
Pagina's
116
Geüpload op
22-01-2025
Geschreven in
2023/2024

Full summary math, pre master finance (116 pages)












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
22 januari 2025
Aantal pagina's
116
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Inhoudsopgave
Basic math: (chapter 1-3) .............................................................................................................. 3
Basic 1: Logic ..................................................................................................................................3
Properties of power......................................................................................................................3
Rules of algebra ...........................................................................................................................4
Fractions .....................................................................................................................................5
Summations ...............................................................................................................................8
Square roots ............................................................................................................................. 10

Basic 2: Finding critical points: .....................................................................................................11
Solving equations ...................................................................................................................... 11
Solving inequalities .................................................................................................................... 11
Factorization!!!!! ............................................................................................................................ 14
2 equations -> 2 unknowns ............................................................................................................. 15

1. Functions of 1 variable (H4) ..................................................................................................16
Find the domain. ............................................................................................................................ 17
Find the range. (R=Range) ............................................................................................................... 20
Graph of a function ........................................................................................................................ 22
Working with polynomials .............................................................................................................. 24
Cubic function:(EXAM) ............................................................................................................... 24
Rational function: ...................................................................................................................... 26
Factor for polynomials. .............................................................................................................. 27
Polynomials division!!! OPGAVE WEEKLY ASSIGNMENT boven EN MIDTERM onder! ....................... 28
Master the EXP() function !!!, Master the LN Function!!!! (EXAM) ........................................................ 30
Inverse functions! .......................................................................................................................... 33
Know how the standard graphs look like! ......................................................................................... 37

2. Differentiation of a Function F(X) ..........................................................................................38
Definition (EXAM) ........................................................................................................................... 38
Learn from looking at the first interval. ............................................................................................. 40
First derivative & second derivative: (EXAM) ..................................................................................... 42
Quotient rule: ............................................................................................................................ 44
Product rule: F(X)=F(X) X G(X) -> F’X=F’(X) X G(X) + F(X) X G’(X)...................................................... 45
Chain rule: F(x)-F(G(X))-> F’(x)=F’(GX(x)) X G’(X) ........................................................................... 45
Convex or concave? (EXAM) ....................................................................................................... 47
Rules for differentiation .................................................................................................................. 50
EXP(x) and LN (x) ............................................................................................................................ 53
Chain rule ..................................................................................................................................... 54

Limits! .........................................................................................................................................58
Limits at infinity: EXAMEN !!!!!! ........................................................................................................ 59

3. Optimization .......................................................................................................................66



pag. 1

, Single variable optimization: ........................................................................................................... 69
Def min/max .................................................................................................................................. 70
Ness FOC (First order condition) ..................................................................................................... 71
First derivative test (EXAM) ............................................................................................................. 71
Exterme value theorem (EXAM) ....................................................................................................... 74
Definition (EXAM) ....................................................................................................................... 75
Extrema for Concave/Convex functions ........................................................................................... 75
Local extrema ................................................................................................................................ 76
Concave or convex functions .......................................................................................................... 78
Inflection points (EXAM) ................................................................................................................. 81

4. Functions with more variables .............................................................................................82
Find the Domain ............................................................................................................................ 82
Partial Derivatives .......................................................................................................................... 83
Convexity/concavity ....................................................................................................................... 84
Young’s Theorem ........................................................................................................................... 84
Chain rule in 2nd dimension (EXAM) ................................................................................................. 84
Nec. FOC ...................................................................................................................................... 95
Sufficient condition!!!!! ................................................................................................................... 95
Extreme Value Theorem (EXAM) ...................................................................................................... 96
Saddle points (and other) ............................................................................................................... 97

5. Matrices (EXAM) ..................................................................................................................98
Matrix Addition:............................................................................................................................ 103
Matrix multiplication: ................................................................................................................... 104
Identity matrice !!! ........................................................................................................................ 107
Transparant matrice ..................................................................................................................... 108
Inverse matrix -> when ................................................................................................................. 110
2x2 case ...................................................................................................................................... 112




pag. 2

,Basic math: (chapter 1-3)
Basic 1: Logic
➔ Nes condition and sufficient condition

Overige regels:




Properties of power
- To the power of 0 -> Equals 1: -> 1/1=2
- 2x to the power 4: -> 2 to the power 4 and x to the power 4.
-

-

-

-


-




pag. 3

, Rules of algebra
Simpele rekenregels:




Voorbeelden:
Show that : f(x)=F(-x) -> LETTERLIJK doen wat er gevraagd wordt: voorbeeld van miderm:
Show that G(-x) = -g(x) -> G(-x) = -g(x) (formule was 3x^3 – 1/5x^5
- Voor de -g(x) -> zet een – voor de formule
- Voor de g(-x) -> zet een – voor de x en.
- Is nu gelijk.
What does this mean geometrically?
- What does this mean on the graps (= the same so (a,b) and (-a,-b) are on the
graph.
- Just try some point and give answer




Just an easy warm up question.
- 5+3=8, but 4+4 is also 8
- 4x4=16, but -4*-4 is also 16
- Something times 0 or – turns the equation negative so true, other way round not cause x
could be 3, so the y does not make a difference.
- True and True, cause: -2 X -2 X -2 = -8, so x needs to be 2 both ways round.




30 pm vast, 0.16 per minute, Cost=30+0.16x. plug in 102 and 126 on the ends, you
will get both answers.




pag. 4
€6,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
DBSTUVIA
3,0
(1)

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
9 maanden geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
DBSTUVIA Haagse Hogeschool
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6
Lid sinds
6 jaar
Aantal volgers
0
Documenten
7
Laatst verkocht
9 maanden geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen