100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Oxford-Math Analysis and Approaches SL Question Booklet 2025

Beoordeling
-
Verkocht
-
Pagina's
172
Cijfer
A+
Geüpload op
15-01-2025
Geschreven in
2024/2025

Oxford-Math Analysis and Approaches SL Question Booklet 2025

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
15 januari 2025
Aantal pagina's
172
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

End of chapter test




1 From patterns to generalizations:
sequences and series
Section A. A calculator is not allowed

1 The nth term of an arithmetic sequence is given by un= 4 + 3n

a Write down the first four terms.

b Find the common difference.

c Find the value of n if the nth term is 109.

d Find the sum of the first 21 terms.

2 In an arithmetic sequence, the 40th term is 144 and the sum of the first 40 terms is 2640. Find

a the first term

b the common difference.

2 2 2
3 Given the sequence ,   ,   ,  2 :
27 9 3

a Find the common ratio.

b Find the eighth term.

4 A school theatre has 24 rows of seats. There are 18 seats in the first row and each subsequent
row had two more seats than the previous row. What is the seating capacity of the theatre?

5 Find the first two terms of an arithmetic sequence where the sixth term is 21 and the sum of
the first 17 terms is zero.

6 a How many terms are there in the expansion of ( a + b ) ?
10




b Show the full expansions of (3x + 2y ) .
4




7 Evaluate
5 6
a ∑ (x
n =1
2
)
+ 2    b ∑2
i =2
i




Section B. A calculator is allowed

8 A geometric sequence has a 2nd term of 6 and a 5th term of 162.

a Find the common ratio.

b Find the 10th term.

c Find the sum of the first 8 terms.

9 A rose bush is 1.67m tall when planted, and each week its height increases by 4%. How tall
will it be after 10 weeks?



© Oxford University Press 2019 End of chapter test 1

, End of chapter test




10 The Fibonacci sequence is named after Italian mathematician Leonardo of Pisa, who was known as
Fibonacci.

In this Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, …,

a Find the 10th term of the Fibonacci sequence.

b Write a recursive formula for the Fibonacci sequence.

11 a Explain the condition for a geometric series to be convergent.

10 10
Given the series 10 − + − …,
3 9

b Find the common ratio

c Find the sum to infinity.
9
 2 
12 Find the constant term in the expansion of  x − 2 
 x 

13 Yosef drops a basketball from his bedroom window, which is 3m off the ground. After each bounce,
the basketball comes back to 75% of its previous height. If it keeps on bouncing forever, what
vertical distance, to the nearest metre, will it travel?

14 Tafari starts a job and deposits $500 from the first salary into a bank account producing 4%
interest every month. Each month after that, Tafari deposits an additional $100.

a Calculate the amount Tafari has in the account at the end of each month for the first three
months.

b Write a recursive formula for the amount of money in the account.

c Show that the formula for the amount of money in the account for year n is

(
500 (1.04 ) + 2500 (1.04 ) − 1
n n
)
d Use the formula to find the amount of money in Tafani’s account after 24 months.




© Oxford University Press 2019 2

, End of chapter test




Answers

1 a 7, 10, 13, 16 n
d=
Sn
2
(u1 + un )
b d = 10 − 3 = 7
u1 = 7, n = 21, u21 = 4 + 3(21) = 67
c 4 + 3n =
109
21
3n = 105 S21 =
2
(7 + 67) = 777
n = 35

n b un = u1 + ( n − 1) d
2 a=
Sn
2
(u1 + un )
144 =−12 + ( 40 − 1) d
40
2640
=
2
(u1 + 144)
39d = 156

132
= (u1 + 144) d =4

u1 = −12

2 2 2
3 Given the sequence ,   ,   ,  2
27 9 3

2
9  2  7 2 7
a=r = 3 b u8 = 4
 3 = 3  3 =2 × 3 =162
2  27  3 
27

n
4 sn
=
2
(
2u1 + ( n − 1) d )
24
s24
=
2
(
2 (18 ) + (24 − = )
1) 2 984 seats


5 un = u1 + ( n − 1) d 21
= u1 + 5d
n 17
sn
=
2
( ) d 0 2 (2u1 + 16d )
2u1 + ( n − 1= )
This gives the simultaneous equations

u1 + 5d =
21

u1 + 8d =
0

Solve to find d = –7 and u1 = 56.

The first two terms are 56 and 49.

6 a 11

b Using the 4th row of Pascal’s triangle, 1 4 6 4 1,

1 (3x ) + 4 (3x ) (2y ) + 6 (3x ) (2y ) + 4 (3x ) (2y ) + 1 (2y )
4 3 2 2 1 3 4




=81x 4 + 216 x 3y + 216 x 2y 2 + 96 xy 3 + 16y 4

7 a 3 + 6 + 11 + 18 + 27  65
= b 4 +8 + 16 + 32 + 64 =124




© Oxford University Press 2019 3

, End of chapter test




8 a 6r3 = 162

r3 = 27

r=3

b = ( u1 ) r n −1
un

u10 = 2 × 39 = 39366


c S8
=
(
2 38 − 1
= 6560
)
3 −1

9 = ( u1 ) r n −1
un

= (=
u10   1.67 ) (1.04)10−1 2.38m
10 a 55

b un +=
1
un + un −1

11 a −1 < r < 1

10 10
Given the series 10 − + −…
3 9

10 1
b r =
− ÷ 10 =

3 3

10 10
c S∞
= = = 7.5
 1 4
1 − −  3
 3

3
9  −2 
12   x 6  2  = −672
3
  x 

13




u1 = 3, r = 0.75

3 3
S∞
= = = 12
1 − 0.75 0.25

To account for upward and downward movement, multiply by 2, but the original drop of 3 only
occurred once, so subtract 3 from the answer.

Vertical distance = (12 × 2) − 3= 21metres


© Oxford University Press 2019 4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Exammate Indiana University Of Pennsylvania
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
51
Lid sinds
4 jaar
Aantal volgers
8
Documenten
3202
Laatst verkocht
19 uur geleden
The plug

You cannot simultaneously prevent and prepare for war. Albert Einstein We'd love to hear how satisfied you are with your order. Please take a moment to leave a review, Thank you.

2,4

5 beoordelingen

5
1
4
0
3
1
2
1
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen