100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions Manual for Precalculus Mathematics for Calculus 7th Edition Stewart

Beoordeling
-
Verkocht
-
Pagina's
151
Cijfer
A+
Geüpload op
12-01-2025
Geschreven in
2024/2025

Solutions Manual for Precalculus Mathematics for Calculus 7th Edition Stewart

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
12 januari 2025
Aantal pagina's
151
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

SOLUTIONS MANUAL FOR
PRECALCULUS MATHEMATICS
FOR CALCULUS 7TH EDITION
STEWART

,Precalculus Mathematics for Calculus 7th Edition Stewart Solutions Manual




2 FUNCTIONS

2.1 FUNCTIONS
1. If f x  x 3  1, then
(a) the value of f at x  1 is f 1  13  1  0.
(b) the value of f at x  2 is f 2  23  1  9.
(c) the net change in the value of f between x  1 and x  2 is f 2  f 1  9  0  9.

2. For a function f , the set of all possible inputs is called the domain of f , and the set of all possible outputs is called the
range of f .

x 5
3. (a) f x  x 2  3x and g x  have 5 in their domain because they are defined when x  5. However,
x
  
h x  x  10 is undefined when x  5 because 5  10  5, so 5 is not in the domain of h.
55 0
(b) f 5  52  3 5  25  15  10 and g 5    0.
5 5

4. (a) Verbal: “Subtract 4, then square and add 3.”
(b) Numerical:
x f x
0 19
2 7
4 3
6 7

5. A function f is a rule that assigns to each element x in a set A exactly one element called f x in a set B. Table (i) defines
y as a function of x, but table (ii) does not, because f 1 is not uniquely defined.

6. (a) Yes, it is possible that f 1  f 2  5. [For instance, let f x  5 for all x.]
(b) No, it is not possible to have f 1  5 and f 1  6. A function assigns each value of x in its domain exactly one
value of f x.

7. Multiplying x by 3 gives 3x, then subtracting 5 gives f x  3x  5.

8. Squaring x gives x 2 , then adding two gives f x  x 2  2.

9. Subtracting 1 gives x  1, then squaring gives f x  x  12 .

 x 1
10. Adding 1 gives x  1, taking the square root gives x  1, then dividing by 6 gives f x  .
6
x 2
11. f x  2x  3: Multiply by 2, then add 3. 12. g x  : Add 2, then divide by 3.
3

x2  4
13. h x  5 x  1: Add 1, then multiply by 5. 14. k x  : Square, then subtract 4, then divide by 3.
3
141




Visit TestBankDeal.com to get complete for all chapters

,142 CHAPTER 2 Functions

 3
15. Machine diagram for f x  x  1. 16. Machine diagram for f x  .
x 2
subtract 1,
subtract 2,
1 then take 0
square root 3 take reciprocal, 3
multiply by 3

subtract 1,
subtract 2,
2 then take 1
square root _1 take reciprocal, _1
multiply by 3

subtract 1,
subtract 2,
5 then take 2
square root 1 take reciprocal, _3
multiply by 3



17. f x  2 x  12 18. g x  2x  3

x f x x g x
1 2 1  12  8 3 2 3  3  3
0 2 12  2 2 2 2  3  1
1 2 1  12  0 0 2 0  3  3
2 2 2  12  2 1 2 1  3  5
3 2 3  12  8 3 2 3  3  9

19. f x  x 2  6; f 3  32  6  9  6  3; f 3  32  6  9  6  3; f 0  02  6  6;
   2
f 12  12  6  14  6   23 4.


20. f x  x 3  2x; f 2  23  2 2  8  4  12; f 1  13  2 1  1  2  3;
   3  
f 0  03  2 0  0; f 12  12  2 12  18  1  98 .

 
1  2x 1  2 2 1  2 2 5   1  2 12 1  2a
21. f x  ; f 2   1; f 2   ; f 1   0; f a  ;
3 3 3 3 2 3 3
1  2 a 1  2a 1  2 a  1 3  2a
f a   ; f a  1   .
3 3 3 3

x2  4 22  4 8 22  4 8 a2  4 x2  4 x2  4
22. h x  ; h 2   ; h 2   ; h a  ; h x   ;
5 5 5 5 5 5 5 5
 2
a  22  4 a 2  4a  8   x 4 x 4
h a  2   ;h x   .
5 5 5 5

23. f x  x 2  2x; f 0  02  2 0  0; f 3  32  2 3  9  6  15; f 3  32  2 3  9  6  3;
   2  
1 1 1 1 2
f a  a 2  2 a  a 2  2a; f x  x2  2 x  x 2  2x; f  2  2  .
a a a a a

1  
24. h x  x  1  1  1  2; h 2  2  1  5 ; h 1  1  1  1  2  5 ;
; h 1  1  1
x 2 2 2 2 1 2 2
2
 
1 1 1 1 1
h x  1  x  1  ;h     x.
x 1 x x 1 x
x

, SECTION 2.1 Functions 143
 
  1 1 1
1x 1  2 1 1 1  1 1 2 1
25. g x  ; g 2     ; g 1  , which is undefined; g     2  ;
1x 1  2 3 3 1  1 2 1 3 3
1 2 2
 
1  a 1a 1  a  1 1a1 2a  2  1  x2  1 2  x2
g a   ; g a  1    ;g x 1     .
1  a 1a 1  a  1 1a1 a 1  x2  1 x2
t 2 2  2 22 02 a2
26. g t  ; g 2   0; g 2  , which is undefined; g 0   1; g a  ;
t 2 2  2 22 02 a2
  a2  2  2 a2 a12 a3
g a2  2  2  2 ; g a  1   .
a 22 a 4 a12 a1
27. k x  x 2  2x  3; k 0  02  2 0  3  3; k 2  22  2 2  3  5; k 2   22  2 2  3  3;
   2   
k 2   2 2 2  3  1  2 2; k a  2   a  22  2 a  2  3  a 2  6a  5;
   2  
k x   x2  2 x  3  x 2  2x  3; k x 2   x 2  2 x 2  3  x 4  2x 2  3.

28. k x  2x 3  3x 2 ; k 0  2 03  3 02  0; k 3  2 33  3 32  27; k 3  2 33  3 32  81;
   3  2    3  2 a 3  3a 2
k 12  2 12  3 12   12 ; k a2  2 a2  3 a2  ; k x  2 x3  3 x2  2x 3  3x 2 ;
4
   3  2
k x 3  2 x 3  3 x 3  2x 9  3x 6 .
29. f x  2 x  1; f 2  2 2  1  2 3  6; f 0  2 0  1  2 1  2;
     
 
f 12  2  12  1  2 12  1; f 2  2 2  1  2 1  2; f x  1  2 x  1  1  2 x;
      
   
f x 2  2  2  x 2  2  1  2 x 2  1  2x 2  2 (since x 2  1  0 ).
x 2 2 1 1
30. f x  ; f 2    1; f 1    1; f x is not defined at x  0;
x 2 2 1 1
 
5 5   x 2  x2
 
1 1x x
f 5    1; f x 2  2  2  1 since x 2  0, x  0; f   .
5 5 x x x 1x x
31. Since 2  0, we have f 2  22  4. Since 1  0, we have f 1  12  1. Since 0  0, we have
f 0  0  1  1. Since 1  0, we have f 1  1  1  2. Since 2  0, we have f 2  2  1  3.
32. Since 3  2, we have f 3  5. Since 0  2, we have f 0  5. Since 2  2, we have f 2  5. Since 3  2, we
have f 3  2 3  3  3. Since 5  2, we have f 5  2 5  3  7.
33. Since 4  1, we have f 4  42  2 4  16  8  8. Since  32  1, we have
   2  
f  32   32  2  32  94  3   34 . Since 1  1, we have f 1  12  2 1  1  2  1. Since
1  0  1, we have f 0  0. Since 25  1, we have f 25  1.
34. Since 5  0, we have f 5  3 5  15. Since 0  0  2, we have f 0  0  1  1. Since 0  1  2, we have
f 1  1  1  2. Since 0  2  2, we have f 2  2  1  3. Since 5  2, we have f 5  5  22  9.
35. f x  2  x  22  1  x 2  4x  4  1  x 2  4x  5; f x  f 2  x 2  1  22  1  x 2  1  4  1  x 2  6.
36. f 2x  3 2x  1  6x  1; 2 f x  2 3x  1  6x  2.
   2
37. f x 2  x 2  4; f x  [x  4]2  x 2  8x  16.
x  x  f x 6x  18 3 2x  6
38. f 6  18  2x  18;    2x  6
3 3 3 3 3
39. f x  3x  2, so f 1  3 1  2  1 and f 5  3 5  2  13. Thus, the net change is f 5  f 1  13  1  12.
40. f x  4  5x, so f 3  4  5 3  11 and f 5  4  5 5  21. Thus, the net change is
f 5  f 3  21  11  10.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
clarenamwaki Daemen College
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
13
Lid sinds
2 jaar
Aantal volgers
9
Documenten
633
Laatst verkocht
1 maand geleden

4,4

5 beoordelingen

5
3
4
1
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen