100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Statistics 1: Full lecture notes including additional examples!

Beoordeling
-
Verkocht
-
Pagina's
37
Geüpload op
06-01-2025
Geschreven in
2024/2025

This PDF includes: - Lecture notes . My notes are not just powerpoint notes, but instead full lecture notes including extra information. - Additional information and graphs/formulas used during the lecture. -Summary of the literature. -In some cases a Dutch translation of concepts. Written in semester 1b 2024/2025.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
6 januari 2025
Aantal pagina's
37
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistics 1 – Including summary literature, full lecture notes, key takeaways, examples, formulas.

- Lectures 0 – 9.
- Lecture 10 is the summary lecture and the notes are part of/included in lecture 0 -9.
- Seminar notes.
Note: only the decision tree is not written in this summary.

,Statistics 1 – Lecture notes + literature




Lecture 0 and 1:
Population → The group that you wish to describe (firms or people).
- The entire set of elements.
Sample → The group for which you have data (=limited).
- A subset of elements from the population, taken with the intention of
making inferences (=gevolgtrekkingen) about the population.

Why taking a sample? Too expensive, impossible, not sampling might be
destructive (example in physical geography) or impractical.
→Representative= make sense to a wider group=the population.

Parameter= numerical property of the population.
“We don’t know” How close is it towards each other?
Statistic= numerical property of a sample. = Representative?
“We know/we collected”.

= sampling error = a difference/ uncertainly arise between the value of a parameter and the statistic
computed to estimate that parameter. We are not 100% sure between those values. Result of:
- Variability (change).
- Sampling Bias.
- Nonsampling Error: Due to mistakes in the research process. Example: Use of wrong codes.

Reducing sampling error?
➢ Variability→ By increasing N (=size).
➢ Sampling Bias→ By design a sampling procedure.
➢ Nonsampling Error→ By:
- Validity, accuracy, precision of variables.
- Prevent coding errors.
- Prevent interpretation errors.
- Good labelling and metadata (use of R).

,Important concepts:
- Variability= repeated sampling form the same population results in different values for the
statistic. Less variability= more reliable= more inference to make conclusions.
- Sampling distribution= describes how the statistic varies when sampling is repeated.
In other words: Describes (extent of) variability.
= basis for inference (=gevolgtrekkingen)! →How good is the sample that it says something
about a population.

But: We can’t fully generalize sampling: Central Limit Theorem
→There is a difference between what we want and what we exactly do
- We may assume that…
- Under certain conditions….
- Such as a large number of cases and a fixed standard deviation
➔ The sampling distribution of the mean is approximately normal with standard error=

Normal distribution: Average/most values.
Less chance of values but not
impossible.




Sampling Bias= result of procedures which favour the inclusion, in your sample, of elements from the
population with certain characteristics. Different kinds or combination of:
- Population.
- Researcher: Personality, design and topic.
- Respondent.
May result in:
- Incomplete coverage: Relevant elements are not in the sampling frame.
- Nonresponse: Refusal or missing data.
Solution to reduce sampling bias= the 5 steps in the sampling process.

1= Define the population including time frame and geographical limit.
2= Ordered list of the individuals in a population.
- Include all individuals.
- Each individual element should only appear once.
Target population= set of all individual relevant to the study.
Sampled population= all the individuals listed in the sampling frame.
3= Procedure uses to select individuals from the sampling frame for the sample.
4= Making a pilot-sample/pretest to test the data collection procedures in advance. To check.
5= To minimize nonsampling error.

, Different types of samples:
- Probability samples: You don’t know/you have no control.
1. Simple random= you need access to everyone and pick up randomly and leave for the
sample. There’s an equal probability of being select.
2. Independent random= simple random with replacement. The one you pick up randomly
does not leave. Used in small populations.
3. Systematic= there is a rule involved. Example: Every 10th person is in the sample.
4. Stratified= divide into groups based on differences before sampling. To control the
sampling process, reduce sampling error and decrease likelihood of unrepresentative
samples. Example: Male-Female.
5. Cluster= divide into groups features. Each person in the cluster is almost the same.

- Nonprobability samples: You (researcher) choose who is in your sample.
Uses in de qualitative research since you need “special” people/perspectives.
1. Judgemental or purposeful= Personal judgement is used to decide who is in the sample.
These are the people who best serve the purpose of the sample according to you.
2. Convenience or accessibility= Only convenient or accessible members of the population.
3. Quota= specific categories/subgroups to obtain a representative sample of the
population. Based on bias.
4. Volunteer= individuals who self-select from the population. But: more motivated.




Geographic sampling: Based on space/spatial.
a. Traverse samples→ random lines through the map. Ony data on the line is in the sample.
b. Quadrat samples→ random little boxes are on the map. Only data in these boxes is in the
sample.
c. Point samples→ random points on the map. Only these datapoints are in the sample.

The categories can be divided into:
a. Random.
b. Systematic.
c. Stratified systematic within stratum(=lagen).
d. Stratified, random orientation.
€5,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
juliadonna

Maak kennis met de verkoper

Seller avatar
juliadonna Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
1 jaar
Aantal volgers
0
Documenten
5
Laatst verkocht
3 maanden geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen