100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Multi-Agent Systems - Slides Summary

Beoordeling
-
Verkocht
-
Pagina's
47
Geüpload op
03-01-2025
Geschreven in
2020/2021

A summary of all the slides for the course Multi-Agent Systems, BSc AI.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 januari 2025
Aantal pagina's
47
Geschreven in
2020/2021
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Multi-Agent Systems - Summary

Lecture 1 - Introduction
Intelligent Agent Paradigm
● An agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through effectors, but we are interested in automated agents
● Internally, an agent is: agent = architecture + program
● Core business of AI: designing agent architectures & programs

Natural agents
● Animals are agents
○ Can perceive their environment using their eyes, ears, skin (touch), tongue (taste), nose
(smell)
○ Can act upon their environment by their muscle motor systems (moving), mouth
(sounds)
○ Cognitive skills: perception, attention, memory, language, learning, and problem solving
● Human agents
○ Can perceive their environment using their eyes, ears, skin (touch), tongue (taste), nose
(smell)
○ Can act upon their environment by their muscle motor systems (moving), mouth
(sounds)
○ Are very versatile (ability to adapt): can survive in almost any environment on earth
○ Advanced cognitive skills: perception, attention, memory, language, learning, and
problem-solving skills

Robotic Agents
● Can perceive their environment using their cameras, microphones, touch sensors,...
● Can act upon their environment by their motor and sound systems, displays,...
● Are currently not yet versatile: can function in specific contexts
● Do currently not yet have advanced cognitive skills, limited perception, attention, memory,
language, learning and problem-solving skills

Intelligent Agents
● Reactive: ability to receive information and respond
● Pro-active: ability to take the initiative
● Social: ability to communicate and cooperate
● Autonomous: agents control their own processes

Cognitive (-Affective) Agents
● An agent is anything that can be (usefully) viewed as a system that has
○ Beliefs, desires, goals, intentions, plans, expectations, hopes, fears, joy…

Intentional Systems
● First-order:
○ bel(p): the agent believes that p
○ goal(p): the agent has a goal (or wants) that p


1

,Multi-Agent Systems - Summary

● Second-order:
○ bel(a; bel(b,p)): a believes that b believes that p
○ bel(a; goal(b,p)): a believes that b wants that p
○ goal(a; bel(b,p)): a wants that b believes that p
○ goal(a; goal(b,p)): a wants that b wants that p

Notion of Cognitive Agent
● Agents with the following basic capabilities:
1. Event processing: process events like percepts and messages
2. Knowledge representation: process events like percepts and messages. It allows to
maintain a model of the environment and other agents. (e.g. use propositional or FOL, or
Prolog)
3. Decision-making: agent is able to select an action based on its belief, knowledge, and
goals.
● We are not concerned about how to transform observations into symbolic representation. We
abstract from this.

Cognitive state
● The internal state of a cognitive agent is called a cognitive state
● Typically, it includes:
○ Event component
■ Percepts
■ Messages
○ Informational component
■ Knowledge (static)
■ Beliefs (dynamic)
○ Motivational component (what the agent wants to achieve)
■ goals

Environments
● It is very important to emphasize that agents are situated in an environment
● Percepts: agents usually don’t see the real state of the environment but only receive percepts
● Designer: the designer has to process percepts and possibly store them within the agent’s
memory
● Environment-properties: as such it is very important to know the characteristics of an
environment before designing an agents

Properties of environments
● Fully/partially observable: if the environment is not completely observable the agent will need
internal states
● Deterministic/stochastic: deterministic if completely determined by the agent’s action. If the
environment is only partially observable, then it may appear stochastic (while it is
deterministic)
● Static/dynamic: the environment can change while an agent is deliberating


2

,Multi-Agent Systems - Summary

● Discrete/concrete: if there is a limited number of percepts and action the environment is
discrete
● Single/multi-agents: is there just one agent or are there several interacting with each other

Cognitive agents & environments
● For cognitive agents, we take the view that an environment offers controllable entities that are
connected to cognitive agents.
● Possible view:
○ Cognitive agent is the mind
○ Controllable entity is the body
● An action specification designs which actions are available to an agent and when. It is defined
by the environment.

Interaction with environment & agents
● Observation: how can the agent observe its environment?
○ Passive: the agent receives the results of observations without taking any initiative or
control to observe
○ Active: the agent actively initiates and controls which observations it want to perform
● Execution of Actions: The agent is capable of making changes to the state of its environment by
initiating and executing actions.

● Communication with other agents: two directions of communications are distinguished, which
can occur together:
○ Outgoing: is the agent capable of communicating with another agent?
○ Incoming: is the agent capable of receiving communication from another agent?

Cognitive agent programming
● Cognitive agent language: programming language with events, beliefs, goals, actions, plans, …
as first-class citizens
● Key language elements
○ Events received from environment (& agents)
○ Beliefs and goals to represent the environment
○ Actions to
1. Update beliefs, adopt goals,
2. Send messages,
3. Act in environment
○ Plans to structure action
○ Rules to select actions/plans/modules
○ Modules to structure rules & action selections
○ Support for multi-agent systems
● Cognitive stats used for:
○ Representing and reasoning about the environment
○ Deriving a choice of action from beliefs and goals




3

, Multi-Agent Systems - Summary

Prolog
● A logic-based programming language, focused on the description of a problem (and thus not
on how to solve it)
○ Declarative programming vs. imperative/procedural programming
● Prolog is based on a different programming paradigm, and thus requires a different way of
thinking

Imperative vs. Declarative
● Imperative: uses statements that change a program’s state.
○ E.g., all the steps you have to take before ordering a coffee (enter shop, wait in line etc.)
● Declarative: expresses the logic of a computation without describing its control flow.
○ E.g., “A large latte for takeaway, please”

Propositional logic
● A declarative sentence (or proposition) is a statement that is true or false
● Propositional variables p, q, r, …
● Connectives




● Propositional formulas
1. Every propositional variable p, q, r, … is a formula
2. (a) If ϕ is a formula, then so is (¬ϕ)
(b) If ϕ and ψ are formulas, then so are (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ ⊕ ψ), (ϕ → ψ) and
(ϕ ↔ ψ)
● A valuation corresponds to one line in the truth table of a formula.

First-order logic
● Logical structures are indicated as L = (U, S, I), where L is the name of the structure, U is a
universe, S is its signature ad I is an interpretation.
● Universe: the universe of objects about which a first-order logic is formulated. Also called the
domain of discourse
● Signature: the set of non-logical symbols with which expressions about the domain can be
composed.
○ Predicate symbols: per universe you can define your own predicate symbols, e.g., Pk,
Qk, would be k-ary predicate symbols. Propositions are 0-ary predicate symbols.
○ Function symbols: fk, gk are k-ary function symbols. Constants are 0-ary function
symbols.
○ Variables: x,y,...
● Interpretation: how non-logical expressions should be interpreted in the universe




4
€12,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen