100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Differential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% Pass

Beoordeling
-
Verkocht
-
Pagina's
16
Geüpload op
03-01-2025
Geschreven in
2024/2025

Differential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% PassDifferential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% PassDifferential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% PassDifferential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% PassDifferential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% PassDifferential-Geometry of Manifolds Vector Fields-Along-Curves, guaranteed and verified 100% Pass

Meer zien Lees minder
Instelling
Math
Vak
Math










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Math
Vak
Math

Documentinformatie

Geüpload op
3 januari 2025
Aantal pagina's
16
Geschreven in
2024/2025
Type
College aantekeningen
Docent(en)
Auroux, denis
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

1


Vector Fields Along Curves

Given a curve, 𝛾(𝑡), on a smooth manifold 𝑀 and a vector 𝑉0 ∈ 𝑇𝛾(𝑡0 ) 𝑀 we
want to be able to say what it means to transport 𝑉0 in a “parallel” fashion along
the curve 𝛾(𝑡) to a vector 𝑉1 ∈ 𝑇𝛾(𝑡1 ) 𝑀. This notion of “parallel transport” will
become important when we discuss the Riemann curvature tensor on 𝑀. it’s also
important in the discussion of geodesic curves on a manifold.

Def. Let 𝑀 be a smooth manifold and 𝛾: 𝐼 → 𝑀 be a smooth curve in 𝑀
where 𝐼 is an interval in ℝ. We call 𝑉 a vector field along 𝜸 if for each
𝑡 ∈ 𝐼, 𝑉 (𝑡) ∈ 𝑇𝛾(𝑡) 𝑀 and 𝑉 defines a smooth map 𝐼 → 𝑇𝑀. We
denote the set of all smooth vector fields on 𝑀 along 𝛾 by 𝜒𝛾 (𝑀).

A vector field along a curve is not necessarily the restriction of a vector field on 𝑀
to 𝛾. For example, whenever a curve self-intersects:
𝛾 (𝑡0 ) = 𝛾(𝑡1 ) with 𝑡0 ≠ 𝑡1 , but 𝑉(𝑡0 ) ≠ 𝑉(𝑡1 ).
𝑀
𝛾

𝑀
𝛾




Vector field along 𝛾 that Vector fields along 𝛾 that
is the restriction of is not the restriction of
a vector field on 𝑀. a vector field on 𝑀.

, 2


We defined a connection on 𝑀 as a map, ∇: 𝜒(𝑀) × 𝜒(𝑀) → 𝜒(𝑀).
Now we want to define a map 𝐷𝑡 : 𝜒𝛾 (𝑀) → 𝜒𝛾 (𝑀).

Def. Let 𝑀 be a smooth manifold with a connection ∇ and 𝛾: 𝐼 → 𝑀 a smooth
curve on 𝑀, then the unique map 𝐷𝑡 : 𝜒𝛾 (𝑀) → 𝜒𝛾 (𝑀) such that:

1) 𝐷𝑡 (𝑉 + 𝑊 ) = 𝐷𝑡 (𝑉) + 𝐷𝑡 (𝑊 )
𝑑𝑓
2) 𝐷𝑡 (𝑓𝑉) = ( )𝑉 + (𝑓)(𝐷𝑡 (𝑉))
𝑑𝑡

3) If 𝑉 extends to a vector field 𝑌 ∈ 𝜒(𝑀), then 𝐷𝑡 (𝑉) = ∇𝛾′ (𝑡) (𝑌)
is called the covariant derivative along 𝜸.

If 𝐷𝑡 exists, we can use properties 1, 2, and 3 to find a formula for it. Let 𝑈 be a
coordinate patch on 𝑀 with coordinates (𝑥 1 , … , 𝑥 𝑛 ). For any 𝑉 ∈ 𝜒𝛾 (𝑀) we
can write:
𝜕
𝑉 = 𝑣 𝑖 𝜕𝑖 = 𝑣 𝑖 ; 𝑣𝑖 ∈ 𝐶∞ (𝐼).
𝜕𝑥 𝑖

By conditions 1 and 2:
𝑖 𝑖 𝑖 𝑖 𝑑𝑣 𝑖
𝐷𝑡 (𝑉) = 𝐷𝑡 (𝑣 𝜕𝑖 ) = 𝑣̇ 𝜕𝑖 + 𝑣 𝐷𝑡 (𝜕𝑖 ) where 𝑣̇ = .
𝑑𝑡

If we write 𝛾 (𝑡) = (𝛾 1 (𝑡), 𝛾 2 (𝑡), … , 𝛾 𝑛 (𝑡)), i.e., 𝑥 𝑗 = 𝛾 𝑗 (𝑡),
then:
𝑛

𝛾 ′ (𝑡) = ∑ 𝛾̇ 𝑗 𝜕𝑗 .
𝑗=1
By condition 3:

𝑛

𝐷𝑡 (𝜕𝑗 ) = ∇𝛾′ (𝑡) (𝜕𝑗 ) = ∑(𝛾̇ 𝑖 ) ∇𝜕𝑖 (𝜕𝑗 ) = 𝛾̇ 𝑖 (Γ𝑖𝑗𝑘 )(𝜕𝑘 ).
𝑖=1

, 3


Thus we have:

𝐷𝑡 (𝑉 ) = (𝑣̇ 𝑗 )𝜕𝑗 + (Γ𝑖𝑗𝑘 (𝛾̇ 𝑖 )(𝑣 𝑗 )𝜕𝑘 ) = (𝑣̇ 𝑘 + Γ𝑖𝑗𝑘 (𝛾̇ 𝑖 )(𝑣 𝑗 )) 𝜕𝑘 .
To show that 𝐷𝑡 exists, one can start with this formula and show it satisfies
conditions 1, 2, and 3.

Def. Let 𝑀 be a smooth manifold with a connection ∇ and let 𝛾: 𝐼 → 𝑀 be a
smooth curve on 𝑀. A vector field 𝑉 along 𝛾 is called parallel if 𝐷𝑡 (𝑉 ) = 0 for
all 𝑡 ∈ 𝐼.

Proposition: Let 𝑀 be a smooth manifold with a connection ∇ and let
𝛾: 𝐼 → 𝑀 be a smooth curve on 𝑀, where 𝐼 is a
compact (i.e. closed and bounded) interval of ℝ.
Let 𝑡0 ∈ 𝐼, set 𝑝 = 𝛾 (𝑡0 ), and let 𝑉0 be any vector in 𝑇𝑝 𝑀.
There exists a unique vector field of 𝑀 along 𝛾 that is parallel and
has 𝑉 (𝑡0 ) = 𝑉0 .

𝑀
𝑉0
𝛾
𝑝



In this case, we are parallel transporting the vector 𝑉0 along 𝛾. That is, 𝑉 (𝑡) is
the parallel transport of 𝑉0 along 𝛾. The existence and uniqueness of this vector
field along 𝛾 comes from the existence of a unique solution to a system of
differential equations. Specifically, if 𝑉 (𝑡) = (𝑣 1 (𝑡), … , 𝑣 𝑛 (𝑡)), then we need
to show there is a unique 𝑉 (𝑡) such that:

𝑣̇ 𝑘 + Γ𝑘𝑖𝑗 𝛾̇ 𝑖 𝑣𝑗 = 0 for 𝑘 = 1, … , 𝑛 with 𝑉 (𝑡0 ) = (𝑣 1 (𝑡0 ), … , 𝑣 𝑛 (𝑡0 ))

This comes from a theorem in differential equations.
€9,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
sudoexpert119

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
sudoexpert119 Harvard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
411
Laatst verkocht
-
A+ Smart Scholars Studio

Ace your exams with trusted, expertly crafted resources built for top-tier results.

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen