100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Machine Learning for the Quantified Self - Summary Slides

Beoordeling
-
Verkocht
-
Pagina's
48
Geüpload op
30-12-2024
Geschreven in
2022/2023

A summary of all the slides for the course Machine Learning for the Quantified Self, MSc AI.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 december 2024
Aantal pagina's
48
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Machine Learning for the Quantified Self - Slides Summary


Lecture 1: Introduction and Basics of Sensory Data
Quantified Self definition
●​ Term first coined by Gary Wolf and Kevin Kelly in Wired Magazine
●​ Swan (2013): “The quantified self is any individual engaged in the self-tracking of any
kind of biological, physical, behavioral, or environmental information. There is a proactive
stance toward obtaining information and acting on it.”
●​ We: “The quantified self is any individual engaged in the self-tracking of any kind of
biological, physical, behavioral, or environmental information. The self-tracking is driven
by a certain goal of the individual with a desire to act upon the collected information.”

Quantified Self: measurements
●​ Augemberg (2012):




Quantified Self: why?
●​ Choe, 2014:
○​ Interview with 52 quantified selves
○​ Three categories:
■​ Improved health (cure or manage a condition, execute a treatment plan,
achieve a goal)
■​ Improve other aspects of life (maximize work performance, be mindful)
■​ Find new life experiences (have fun, learn new things)
●​ Gimpel, 2013:
○​ Identify “Five-Factor Framework of Self-Tracking Motivations”:
■​ Self-healing (become healthy)
■​ Self-discipline (rewarding aspects of it)
■​ Self-design (control and optimize “yourself”)
■​ Self-association (associated with movement)
■​ Self-entertainment (entertainment value)




1

,Machine Learning for the Quantified Self - Slides Summary


Quantified Self: Arnold and Bruce
●​ Use two running examples
○​ Arnold:
■​ Loves sports
■​ Wants to participate in IRONMAN
■​ Gadget freak
■​ Smart phone/watch/...
■​ Electronic scale
■​ Chest strap
■​ …...
○​ Bruce:
■​ Diabetic
■​ Susceptible for depression
■​ Smart watch
■​ Device to measure blood glucose level
■​ ......

Moving on the machine learning
●​ Machine learning: “Machine learning is to automatically identify patterns from data”
●​ What could we learn for Arnold and Bruce?
○​ Arnold:
■​ Advising the training to make most progress towards a certain goal based
on past outcomes of training.
■​ Forecasting when a certain running distance will be feasible based on the
progress made so far and the training schedule.
○​ Bruce:
■​ Predict the next blood glucose level based on past measurements and
activity levels.
■​ Determine when and how to intervene when the mood is going down to
avoid a spell of depression.
■​ Finding clusters of locations that appear to elevate one’s mood.

Why is the Quantified Self so different?
●​ Sensory noise
●​ Missing measurements
●​ Temporal data
●​ Interaction with a user
●​ Learn over multiple datasets




2

,Machine Learning for the Quantified Self - Slides Summary


Basic Terminology
●​ A measurement is one value for an attribute recorded at a specific time point.




●​ A time series is a series of measurements in temporal order.




●​ Machine learning terminology is assumed to be known, for your convenience:
○​ Supervised learning is the machine learning task of inferring a function from a
set of labeled training data
○​ In unsupervised learning, there is no target measure (or label), and the goal is
to describe the associations and patterns among the attributes
○​ Reinforcement learning tries to find optimal actions in a given situation so as to
maximize a numerical reward that does not immediately come with the action but
later in time

Mathematical notation




3

, Machine Learning for the Quantified Self - Slides Summary


Overview of the course




Dataset
●​ During the course we will use a running example provided by CrowdSignals.io
●​ People share their mobile sensor data (smart phone and smart watch) and get paid for
annotating their data with activities




Mobile phone measurements (examples)
●​ Accelerometer
○​ Measures the changes in forces upon the phone in the x-y-z plane
●​ Gyroscope
○​ Orientation of the phone compared to the earth’s surface
●​ Magnetometer
○​ Measures x-y-z orientation compared to the earth’s magnetic field




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen