100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Multi-Agent Systems - Summary Slides Lecture 1 and 2

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
30-12-2024
Geschreven in
2022/2023

A summary of lecture 1 and 2 slides for the course Multi-Agent Systems.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 december 2024
Aantal pagina's
24
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Lecture 1 - Introduction
What is an Agent?
● An agent is a computer system that is situated in some environment, and that is capable
of autonomous action in this environment in order to meet its delegated objectives




● Note: autonomy is a spectrum!

Multi-Agent Systems, a Definition
● A Multi-Agent System is one that consists of a number of agents that interact (with each
other and the environment)
● In general, agents will have different goals (often conflicting!)
● To successfully interact, they will have to learn, cooperate, coordinate, and negotiate

Agents and Environment




Motivations for studying MAS
● Techological:
○ Growth of distributed, networked computer systems
■ (computers act more as individuals than parts)
○ Robustness: no single point of failure
○ Scalable and flexible:
■ adding new agents when needed
■ asynchronous, parallel processing
○ Development and reusability
■ components developed independently (by specialists)
● Scientific:
○ Models for interactivity in (human) societies,
■ e.g. economics, social sciences
○ Models for emergence of cooperation


1

, ■ Coordination: cooperation among non-antagonistic agents
■ Negotiation: coordination among self-interested agents

Application: Robotics
● Robots as Physical Agents (Embodiment)
○ Internet of Things (IoT)
○ Swarms of drones,
○ Fleet of autonomous vehicles
○ Physical internet

Multiagent Systems: typical scientific questions addressed
● How can cooperation emerge in societies of self-interested agents?
● What actions should agents take to optimize their rewards/utility?
● How can self-interested agents learn from interaction with the environment and other
agents to further their goals?
● How can autonomous agents coordinate their activities so as to cooperatively achieve
goals?

MAS as Distributed AI (DAI)
● AI : Cognitive processes in individuals
○ Inspiration: neuro-science, behaviourism, ...
● DAI: Social processes in groups
○ Inspiration: social sciences, economics, ....
● Basic question in DAI
○ How and when should which agents interact (compete or collaborate) in order to
achieve their design objectives?
● Approaches:
○ Bottom-up: given specific capabilities of individual agents, what collective
behaviour will emerge?
○ Top-down: Search for specific group-level rues (e.g., conventions, norms, etc.)
that successfully constrain or guide behaviours at individual level;

Multiagent Systems is Interdisciplinary
● The field of Multi-Agent Systems is influenced and inspired by many other fields:
○ Economics
○ Game Theory
○ Philosophy and Logic
○ Mathematics (e.g. optimal control)
○ Ecology
○ Social Sciences
● This can be both a strength and a weakness
● This has analogies with Artificial Intelligence itself




2

, Intelligent Agents
● An intelligent agent is a computer system capable of flexible autonomous action in some
environment
● Autonomous: not pre-determined by designer
● By flexible, we mean:
1. Reactive (able to receive information from environment and respond)
2. Pro-active able to reason and/or learn and work towards goals)
3. Social (able to communicate, coordinate, negotiate and cooperate)

Simple Typology for Intelligent Agents
● Intelligence in agents covers a spectrum:
● Reflex agents
○ Simple reflex agents
○ Model-based reflex agents
● Goal based agents
● Utility based agents
● Learning agents

Type 1: Simple Reflex Agent
● Reacts to environment
○ Percept → Action
○ Based on simple if-then rules
(condition-action)
● Properties:
○ No state: ignore history
○ Pre-computed rules
○ NO Partial observability

Type 2: Model-Based Reflex Agent
● Reflex agent with state
● Agent uses memory to store an internal representation of its world
● Internal model based percept history
● This internal model allows him to handle partially observable environment

Type 3: Goal-Based Agent
● Goal = desired outcome
● Goal-based (planning) agents act by reasoning about which actions to achieve the goal
● Less efficient, but more adaptive and flexible
● Search and planning: AI subfields concerned with finding sequences of actions to reach
goal.




3
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen