100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Knowledge Representation Quiz / Practise Exam with Answers

Beoordeling
-
Verkocht
-
Pagina's
13
Geüpload op
30-12-2024
Geschreven in
2022/2023

Practise exam with answers for the course Knowledge Representation, MSc AI.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 december 2024
Aantal pagina's
13
Geschreven in
2022/2023
Type
Overig
Persoon
Onbekend

Voorbeeld van de inhoud

Knowledge Representation: Practise exam


1. In a proof by contradiction, such as DPLL or tableau, I can prove that a formula F is entailed
by a knowledge base KB by showing that:
● the formula F is unsatisfiable, which implies that it must be entailed by the KB.
● the knowledge base KB and the formula F are together unsatisfiable.
● the knowledge base is unsatisfiable, which implies that the formula F must be entailed.
● the knowledge base KB and the negation of the formula are unsatisfiable.

2. A calculus is called complete w.r.t. the semantics of a logic if, and only, if
● all the formulas it proves are semantically entailed.
● it proves all the correct formulas in finite time.
● it can prove all the semantically entailed formulas.
● all the formulas it proves are tautologies.

3. A calculus is called sound w.r.t. the semantics of a logic if, and only, if
● all the formulas it proves are semantically entailed.
● it proves all the correct formulas in finite time.
● it can prove all the semantically entailed formulas.
● all the formulas it proves are tautologies.

4. A formula is in clause normal form if it is a: .. of .. of …
1: conjunction of 2: disjunctions of 3: literals

5. The semantics (meaning) of a formula in Propositional Logic is determined as:
● a truth value
● a numeric value
● multiple choice
● set membership

6. Consider ((- A v -B) -> (A -> -B)) & (A v B). Which of the following statements are true?
● The sentence is not valid, and thus also not satisfiable
● The sentence is not valid, and thus a contradiction
● The sentence is neither valid, nor satisfiable, nor a contradiction
● The sentence is satisfiable, but not valid
● The sentence is valid, but not satisfiable

7. In the following truth table X1, X2 and X3 stand for possible truth value:




Which of the following statements is correct (multiple answers possible):
● X1 =True, X2 = False, X3 = True, X3 = False, X2 = True, X1 = False



1

, Knowledge Representation: Practise exam


8. Consider the pair of sentences: (-A v -B) -> -(A & B) and ((A -> B) v (B -> C). Which of the
following statements is true? → create truth tables
● There is not enough information to know whether they are equivalent
● Both statements are logically equivalent
● The first statement entails the second, but not vice versa
● They are not logically equivalent

9. Weighted partial MAXSAT formulas. Consider the following statements about geese:
1. all geese are white
2. geese often have two legs
3. It is very likely that a goose is either white or has two legs or both
4. if a goose does not have wings, it cannot fly.

And the following variables:
W stands for goose has wings
X stands for goose is white
Y stands for goose has two legs
Z stands for goose can not fly

Which of the following statements is a faithful representation of the knowledge described
above? → here, ∞ means that its opposite must be true. By satisfying -X, you get the costs.
● F= X & (X v Y, 0.4) & (-Y,5) & (Z v W)
● F= (-X,∞) & (X v Y, 0.4) & (-Y,5) & (Z v W,∞)
● F= (X,∞) & (-(X v Y), 0.4) & (Y,5) & (-(Z v W),∞)
● F= (X,-∞) & (X v Y, 0.4) & (Y,-5) & (Z v W,-∞)

10. Use DPLL procedure to prove or disprove satisfiability of the formula
(X v Y v Z) & ( X v -Y) & (Y v -Z) & (Z v -X) & (-X v -Y v -Z). Label each step which part of the
algorithm you have used.

X = True
(Y v -Z) & Z & (-Y V -Z)
Unit rule: Z = True
Y & -Y → contradiction
Backtracking to beginning: X = False
(Y v Z) & -Y & (Y v -Z)
Y = False
Z & -Z → again contradiction and so UNSAT

11. Give a pseudocode description of GSAT




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen