100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Knowledge Representation - Summary Slides

Beoordeling
-
Verkocht
-
Pagina's
84
Geüpload op
30-12-2024
Geschreven in
2022/2023

Summary of all the slides for the course Knowledge Representation, MSc AI.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 december 2024
Aantal pagina's
84
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Lecture 1: Introduction to KR, the Course and "Logic Engineering”
Definition of intelligence”
● carry out complex reasoning (solve physics problems, prove theorems)
● draw plausible inferences (diagnose cars, solve a murder mystery)
● use natural language (read stories and answer questions about them, carry out
extended conversation)
● solving novel complex problems (generating plans, designing artifacts)
● social activities that require a theory of mind
● we do not (only) mean: recognize familiar objects, execute motor skills, or navigate
around space; abilities we share with dogs and cats (and fish)

But isn’t modern AI all about Machine Learning ?
● Two main lines of development in AI
○ symbolic representations
○ statistical representation
● There have been alternating cycles of one dominating over the other in different decades
of the history of AI.

Statistical vs. symbolic AI: very different types of applications
● statistical:
○ pattern recognition (images, sound, shapes)
○ motor skills (robots)
○ speech generation (sound)
○ search engines
● symbolic:
○ planning (autonomous space missions)
○ reasoning (diagnosis, design, decision support)
○ language generation (conversations)
○ search engines

Human intelligence = thinking fast & thinking slow Stengths and weaknesses




● Scaleable:
○ Symbolic→worse with more data
○ Connectionist→worse with less data




1

,Symbolic knowledge is (not) a theory of everything!




The goal of logic in KR
● To state statements which are known to be true (the “knowledge base”)
● Some statements that describe the current state of the world (the “premises”)
● To state statements for which we want to check if they are true (the “conclusions”)
● To see if the conclusions can be derived from the knowledge base + the premises
through logical reasoning
● A variety of related tasks

The ingredients of a logic in KR
● How to formulate the statements (Syntax)
● Assign meaning to the statements (Semantics)
● Assign what can be derived (Calculus)
○ And all of this differs from application domain to application domain and even application
to application.

Logic Engineering
● Previously, you might have learned that Logics exist, how they are defined, what their
theoretical properties are, etc.
● Knowledge Representation is
○ The field of using the right logic for the right AI task
○ Evaluating logics w.r.t. a task or in general
■ Analytically (e.g. soundess, completeness, decidability, complexity, etc)
■ Empirically (practical complexity, practical completeness)
○ Adapt existing logics for a task (we do that in the course)
○ Develop new logics if needed

Logic Engineering: A (cooking) receipe
1. How to represent a real world problem with a formal system/logic?
2. Which formal system/logic is suitable?
3. Which reasoning task gives us a solution to our problem?
4. What syntax to use?
5. Which algorithm calculates the intended semantics?
● Is it good, and how long does it take?




2

,A toy example: politics in the news
● How to measure success of a political party in the news?
● Are two campaigns comparable? Do they have the same political impact?
● Assumption: Negative news has a higher impact! I need to be in the news twice to
compensate for one bit of negative news.

KR in a nutshell: (syntax, semantics, calculus)




KR in a nutshell 2 (Theory about Logics)




Problem solving by SAT solving → Checking for (in)consistency can be used to
solve problems:
● Many problems can be formulated as a set of constraints on the solution. The
constraints for Sudoku, e.g., can be stated as Propositional Logic constraints.
● Finding a solution
○ is asking if the set of constraints is satisfiable
○ is finding a satisfying truth assignment
● Thus: Solving the problem = finding satisfying truth assignment (that satisfies all
the constraints




3

, Testcase 1: Sudoku, PL and DPLL




1) Formulate the problem as Constraints:
● all squares must have exactly one number from 1-9
● no number can appear twice in a row, column or square

Propositional Logic for Sudokus
● Truth assignments (propositions) are sufficient: If 136 is true, there is value 1 in cell x=3,
y=6. If it is false, this is not the case.
● At least one number in each square:
○ “position 11 is a 1 or a 2 or 3 or a 4” ....
● Maximally one number true in each square
○ “if 111 then NOT 211 AND NOT 311... ” ....
● PL is not the only logic to represent Sudokus, but it is simple, and fast.

Finding Sudoku solutions with PL
● Remember: If 136 is true, there is value 1 in cell x=3, y=6. All we have to do is to look for
those propositions that are true w.r.t the constraints of the game, and the givens. These
are called the models.
● Searching for a solution to a sudoku will thus become a search for models.
● We will look at efficient methods to find models (SAT solving using Davis Putnam
Algorithms).

Logic Engineering for Sudokus=
1. How to represent a real world problem with a formal system/logic?
● Constraint satisfaction
2. Which formal system/logic is suitable?
● Propositional logic
3. Which reasoning task gives us a solution to our problem?
● SAT solving
4. What syntax to use?
● DMAC (or whatever)
5. Which algorithm calculates the intended semantics?
● Davis Putnam (DPLL)
● Is it good, and how long does it take?




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
tararoopram Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
26
Lid sinds
3 jaar
Aantal volgers
2
Documenten
38
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen