100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Calculus 1 material for AP Test

Beoordeling
-
Verkocht
-
Pagina's
7
Geüpload op
26-12-2024
Geschreven in
2023/2024

This document contains an overarching summary of everything you need to know to take the Calculus 1/AB test.

Instelling
Senior / 12th Grade
Vak
Calculus BC









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Senior / 12th grade
Vak
Calculus BC
School jaar
3

Documentinformatie

Geüpload op
26 december 2024
Aantal pagina's
7
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

AB Calculus Theorems Study Guide for AP Calculus Exam Page 1

1. The Intermediate Value Theorem:

If a function f is continuous over the closed interval [a, b],
and k is some number between f(a) and f(b), then the IVT guarantees
that there is at least one number c between a and b such that f(c) = k.
iiiiiiiii
A function continuous on [a, b] must take on each value from f(a) to f(b).

2. The Extreme Value Theorem:

If a function f is continuous over the closed interval [a, b],
then the EVT guarantees that f attains an absolute maximum value
and an absolute minimum value on [a, b].

A function continuous on [a, b] must have global extreme values.


3. The Candidates Theorem: Absolute (global) extrema of a function on a closed interval can
only occur at the endpoints or at critical points where the first derivative is zero or fails to exist.


4. The Mean Value Theorem: (Average Rate of Change or Average Slope)




i.li
If a function f is continuous over [a, b] and differentiable inside (a, b),
f(b) - f(a)
then the MVT guarantees a number c inside (a, b) where f ¢(c) = .
numberb etween
b - a
some
a and bha athe averageslope
itsthe average rate of change.
between and b as slope
MVT: There is at least one point where the instantaneous rate equals

5. The Fundamental Theorems of Calculus (FTC):

x
Part 1: If g(x) = ò a
f(t) dt , then g¢(x) = f(x) when g is an integral or accumulation function of f.

So g(x), the area under f, is changing at an instantaneous rate equal to the y-value of f at x.

d é x ù = f(x). By the chain rule, d é g(x) f(t) dt ù = f(g(x)) × g¢(x).
dx êë ò a dx êë ò a
In symbols, f(t) dt
úû úû

b
Part 2: ò a
f(x) dx = F(b) – F(a) where F is any antiderivative of f on the interval [a, b].
b
Since f(x) = F¢(x), we can rewrite this as ò a
F¢(x) dx = F(b) – F(a).
Application: We can find the net change in a quantity given its rate of change. The definite
integral of a rate of change of a quantity is equal to the total amount of change in that quantity.

6. Inverse Function Derivative Theorem: If g is the inverse of f such that g(a) = b and f(b) = a,
1 1 1
then g¢(a) = . In general, g¢(x) = or where y = g(x).
f ¢(b) f ¢(g(x)) f ¢(y)

, AB Calculus Definitions Study Guide for AP Calculus Exam Page 2

7. Definition of Continuity at a point: A function f is continuous at x = c provided that
f(c) exists, lim f(x) exists, and lim f(x) = f(c). Both one-sided limits must equal f(c).
%→ ' %→ '

8. Asymptotes: A line that the graph of a function approaches as x or y increases to infinity.

a. A vertical asymptote exists at x = a if the limit of f as x approaches a is infinite (± ¥).

b. A horizontal asymptote exists at y = b if the limit of f as x approaches infinity is b.

9. Discontinuities of a Function: A function is discontinuous at x = c when there is:

a. a point discontinuity (hole in graph) which is a removable discontinuity.

b. an infinite discontinuity (vertical asymptote) which is a nonremovable discontinuity.

c. a jump discontinuity (one-sided limits differ) which is a nonremovable discontinuity.

Note: A function is continuous on an interval if it is continuous at each point within the interval.
The graph of a function has no breaks if it is continuous on that interval.

10. Definition: The derivative at the point x = a is the limit of the slope of f approaching x = a.

- % . -(,)
a. The slope of the graph of f at x = a is given by f ¢(a) = lim .
%→, %.,
- , 1/ .-(,)
b. The instantaneous rate of change of f at x = a is given by f ¢(a) = lim .
/→0 /
where h is a small change in x.

- %1/ .-(%)
11. Definition: The derivative of function f is f ¢(x) = lim which tells us the
/→0 /
23
instantaneous rate of change of f at any point where this limit exists. So f ¢(x) = .
2%


12. Definition: A function is differentiable at x = c if f ¢(c) exists as a finite number.

A function is not differentiable at x = c if there is a discontinuity, a sharp turn, or a vertical
tangent line at x = c. The graph of f must be smooth and continuous to be differentiable.

13. The First Derivative Local Extrema Test: Suppose that f ¢(c) = 0 or fails to exist.
a. If f ¢ changes from positive to negative at c, then f has a local maximum at c.
b. If f ¢ changes from negative to positive at c, then f has a local minimum at c.
c. If f ¢ does not change signs at c, then f has no local minimum nor maximum at c.

14. The Second Derivative Local Extrema Test: Suppose that f ¢(c) = 0 or fails to exist.
a. If f ¢¢(c) > 0, then f has a local minimum at c (since f is concave up at that point).
b. If f ¢¢(c) < 0, then f has a local maximum at c (since f is concave down at that point).
c. If f ¢¢(c) = 0, then this test fails so you need to use the first derivative test above.

15. The local linear approximation for a function f at point x = a is y = f(a) + f ¢(a) (x – a).
The local linear approximation of f is the equation of the line tangent to the graph at point a.
€4,81
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
nevanshively06

Maak kennis met de verkoper

Seller avatar
nevanshively06
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
11 maanden
Aantal volgers
0
Documenten
2
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen