100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Logic and set notes/ summary

Beoordeling
5,0
(1)
Verkocht
7
Pagina's
21
Geüpload op
06-04-2020
Geschreven in
2019/2020

Document summarizing all webcasts extra info as provided by the lecturers. Contains handy images and brief, but clear information.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
6 april 2020
Aantal pagina's
21
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Contents
Week 1 – Propositional logic.................................................................................................................2
1.1 Syntax..........................................................................................................................................2
1.2 Semantics.....................................................................................................................................3
1.3 Tautologies, contradictions and contingencies............................................................................4
1.4 Contingencies..............................................................................................................................4
1.5 Logical equivalence......................................................................................................................4
1.6 Logical consequence....................................................................................................................4
Lecture 1............................................................................................................................................4
Week 2 – Predicate logic.......................................................................................................................5
2.1 Introduction to predicates and quantifiers..................................................................................5
2.2 Predicates....................................................................................................................................5
2.3 Quantification of unary predicates..............................................................................................6
2.4 Domain of quantification.............................................................................................................6
2.5 Quantification of predicates of higher arity.................................................................................6
2.6 Binding.........................................................................................................................................7
Week 3 – Derivations.............................................................................................................................7
3.1 – Introduction..............................................................................................................................7
3.2 & 3.3 – Implication and conjunction in proofs.............................................................................7
3.4 – Validity, context, correctness of derivations.............................................................................8
3.5, 3.6, 3.7 – Negation and contradiction in derivations (and an example)......................................8
3.8, 3.9 – Disjunction, bi-implication in derivations (and an example)..............................................9
3.10, 3.11 – Universal quantification in derivations (with an example).............................................9
3.12, 3.13 – Existential quantification in derivations (with an example)..........................................10
3.14 – Variables and declarations....................................................................................................10
3.15 – From derivation to proof; case distinction (with an example)..............................................10
Week 4 – Sets......................................................................................................................................11
4.1 Introduction to sets...................................................................................................................11
4.2 Operations on sets.....................................................................................................................11
4.3 Counterexamples: refuting an equality......................................................................................12
4.4 Inclusion, powerset....................................................................................................................12
4.5 Example with subset, equality, complement and difference.....................................................12
4.6 Equality predicate revisited.......................................................................................................13
4.7 Example with empty set, union, difference and equality...........................................................13
4.8 Pairing and Cartesian product....................................................................................................13

,Week 5 – Relations and mappings.......................................................................................................13
5.1 Introduction...............................................................................................................................13
5.2 Equivalence modulo 5 (example of proving equivalence relation)............................................14
5.3 Equivalence classes....................................................................................................................14
5.4 Definition of mapping................................................................................................................15
5.5 Image.........................................................................................................................................16
5.6 Example with image...................................................................................................................17
5.7 Counterexample with image......................................................................................................17
5.8 Source........................................................................................................................................17
5.9 Surjection (mappings)................................................................................................................17
5.10 Injection...................................................................................................................................18
5.11 Example with image and injection...........................................................................................18
5.12 Bijection and inverse (mappings).............................................................................................18
Week 6 – Induction..............................................................................................................................19
6.1 Principle of induction.................................................................................................................19
6.2 First example of induction.........................................................................................................19
6.3 Example of induction with summation......................................................................................19
6.4 Example of induction with divisibility........................................................................................19
6.5 Strong induction........................................................................................................................20
6.6 First example of strong induction..............................................................................................20
6.7 Second example of strong induction..........................................................................................21
6.8 Third example of strong induction (divisibility)..........................................................................21
Tips from the tutorial.......................................................................................................................21




Week 1 – Propositional logic
1.1 Syntax
Proposition: Boolean statement  statement that is true or false

, - Can be mathematical, not necessarily

Vocabulary

- Proposition variables
o a,b,c (statements)
- Connectives (see signs in picture)
o Not: negation
o And: conjunction
o Or: disjunction (inclusive)
o If: implication
o If and only if: bi-implication
- Combinations of these form the syntax (of abstract
propositions)
o Using clauses, we can show how combinations of
propositions again form propositions
o Use parentheses around the original propositions when combining them, but omit
those not necessary to prevent ambiguity

1.2 Semantics
- Propositions take in input (propositions) and give an output (truth or false)
- P and Q are the inputs (either true (=T or 1) or false (=F or 0)), which give the following
outputs for the different connectives




- Implication can be regarded as a promise:
o When the condition is true and the consequence is true, the promise is hold (thus
true)
o When the condition is true, the promise does not apply, thus any consequence holds
(thus always true)
o When the condition is true, but the consequence is false, the promise is not hold
(thus false)
- Bi-implication can be regarded as an equal sign
o If p and q have the same value (both 0/false or both 1/true), the output is true
o Otherwise: false

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
hildeeschx Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
130
Lid sinds
8 jaar
Aantal volgers
108
Documenten
67
Laatst verkocht
2 maanden geleden

4,2

20 beoordelingen

5
11
4
3
3
4
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen