100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

LINEAR ALGEBRA EXAM FINAL QUESTIONS WITH CORRECT ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
19
Cijfer
A+
Geüpload op
01-12-2024
Geschreven in
2024/2025

LINEAR ALGEBRA EXAM FINAL QUESTIONS WITH CORRECT ANSWERS

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA

Documentinformatie

Geüpload op
1 december 2024
Aantal pagina's
19
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

LINEAR ALGEBRA EXAM FINAL
QUESTIONS WITH CORRECT ANSWERS
a system of linear equations is said to be _____ if it has either one solution or infinitely
many solutions - Answer-consistent

a system of linear equations is said to be _____ if it has no solution - Answer-
inconsistent

elementary row operations - Answer-replacement (replace one row by itself and a
multiple of another row), interchange (interchange 2 rows), scaling (multiply all entries in
a row by a nonzero constant)

if the augmented matrices of two linear systems are row equivalent, then ... - Answer-
the two systems have the same solution set

augmented matrix - Answer-put the constants on the right-hand side next to the
coefficient matrix

A rectangular matrix is in echelon form (or row echelon form) if it has the 3 following
properties: - Answer-1. All nonzero rows are above any rows of all zeros
2. Each leading entry of a row is in a column to the right of the leading entry of the row
above it.
3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in
reduced echelon form: - Answer-4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

Theorem: Uniqueness of the Reduced Echelon Form - Answer-each matrix is row
equivalent to one and only one reduced echelon matrix

a _______ in a matrix A is a location in A that corresponds to a leading 1 in the reduced
echelon form of A. A ______ is a column of A that contains a pivot position. - Answer-
pivot position, pivot column

Theorem: Existence and Uniqueness Theorem - Answer-A linear system is consistent if
and only if the rightmost column of the augmented matrix is not a pivot column-- that is,
if and only if an echelon form of the augmented matrix has no row of the form [ 0 ... 0 b]
with b nonzero.

If a linear system is consistent, then the solution set contains either (i) a unique solution,
when there are no free variables, or (ii) infinitely many solutions, when there is at least
one free variable.

,If a linear system is consistent, then the solution is unique if and only if... - Answer-every
column of the coefficient matrix is a pivot column; otherwise, there are infinitely many
solutions.

A matrix with only one column is called a - Answer-column vector

Parallelogram Rule for Addition - Answer-If u and v in R^2 are represented as points in
the plane, then u + v corresponds to the fourth vertex of the parallelogram whose other
vertices are u, 0, and v.

The vector whose entries are all zero is called the - Answer-zero vector and is denoted
by 0.

A vector equation x1a1 + x2a2 +...+ xnan = b has the same solution set as the linear
system whose augmented matrix is ... - Answer-[ a1 a2 ... an b]

If v1, ..., vp are in R^n, then the set of all linear combinations of v1, ..., vp is denoted by
Span{v1, ..., vp} and is called the - Answer-subset of R^n spanned (or generated) by v1,
..., vp. That is Span{v1, ..., vp} is the collection of all vectors that can be written in the
form c1v1 + c2v2 + ... + cpvp with c1,..., cp scalars.

If A is an m x n matrix, with columns a1, ..., an, and if x is in R^n, then the product of A
and x, denoted by Ax, ... - Answer-is the linear combination of the columns of A using
the corresponding entries in x as weights

= x1a1 + x2a2 + ... + xnan

If A is an m x n matrix, with columns a1, ..., an, and if b is in R^m, the matrix equation
Ax = b has the same solution set as the vector equation x1a1 + x2a2 + ... + xnan = b,
which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is - Answer-[ a1 a2 ... an b]

The equation Ax = b has a solution if and only if - Answer-b is a linear combination of
the columns of A.

Theorem: Let A be an m x n matrix. Then the following statements are logically
equivalent. That is, for a particular A either they are all true statements or they are all
false. (Warning: this is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [A b] has a pivot position in every row, then the equation Ax = b may
or may not be consistent. - Answer-a. For each b in R^m, the equation Ax = b has a
solution.
b. Each b in R^m is a linear combination of the columns of A.
c. The columns of A span R^m.
d. A has a pivot position in every row.

, A system of linear equations is said to be _____ if it can be written in the form Ax = 0,
where A is an m x n matrix and 0 is the zero vector in R^m. This system always has at
least one solution, namely x = 0 (the zero vector). - Answer-homogeneous

the zero solution is usually called the ______ solution - Answer-trivial

_____ is a nonzero vector x that satisfies Ax= 0 - Answer-nontrivial solution

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the equation
has ... - Answer-at least one free variable.

Theorem: Supposed the equation Ax=b is consistent for some given b, and let p be a
solution. Then the solutions set of Ax=b is the set of all vectors of the form w = p + vh,
where vh is any solution of the... Warning: only applies to an equation Ax = b that has at
least one nonzero solution p. When Ax= b has no solution, the solution set is empty. -
Answer-homogeneous equation Ax = 0.

An indexed set of vectors {v1, ..., vp} in R^n is said to be _______ if the vector equation
x1v1 + x2v2 + ... + xpvp = 0 has only the trivial solution. - Answer-linearly independent

The set of vectors {v1, ..., vp} is said to be _______ if there exists weights c1, ..., cp, not
all zero, such that c1v1 + c2v2 + ... + cpvp = 0 - Answer-linearly dependent

The columns of a matrix A are linearly independent if and only if the equation Ax= 0 has
only the _____ - Answer-trivial solution

A set of two vectors {v1, v2} is ________ if at least one of the vectors is a multiple of the
other. - Answer-linearly dependent

A set of two vectors {v1, v2} is ________ if and only if neither of the vectors is a multiple
of the other. - Answer-linearly independent

Theorem: If a set contains more vectors than there are entries in each vector, then the
set is _______. That is, any set {v1, ..., vp} in R^n is _______ if p > n. - Answer-linearly
dependent

Theorem: If a set S = {v1, ..., vp} in R^n contains the zero vector, then the set is
_______. - Answer-linearly dependent

A _______ (or function or mapping) T from R^n to R^m is a rule that assigns to each
vector x in R^n a vector T(x) in R^m. The set R^n is called the ____ of T, and R^m is
called the ____ of T. - Answer-transformation, domain, codomain

The transformation T: R^2 to R^2 defined by T(x) = Ax is called a ______ transformation
- Answer-shear
€13,60
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biggdreamer Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
248
Lid sinds
2 jaar
Aantal volgers
68
Documenten
17956
Laatst verkocht
2 weken geleden

4,0

38 beoordelingen

5
22
4
4
3
6
2
2
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen