100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

COMPUTATIONAL LINEAR ALGEBRA EXAM 1 QUESTIONS WITH CORRECT ANSWERS

Beoordeling
-
Verkocht
-
Pagina's
6
Cijfer
A+
Geüpload op
01-12-2024
Geschreven in
2024/2025

COMPUTATIONAL LINEAR ALGEBRA EXAM 1 QUESTIONS WITH CORRECT ANSWERS

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
LINEAR ALGEBRA
Vak
LINEAR ALGEBRA

Documentinformatie

Geüpload op
1 december 2024
Aantal pagina's
6
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

COMPUTATIONAL LINEAR ALGEBRA
EXAM 1 QUESTIONS WITH CORRECT
ANSWERS
Row Echelon Form (REF) - Answer-1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row
above it.
3. All entries in a column below a leading entry are zeros.

Reduced Row Echelon Form (RREF) - Answer-(In REF)
1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of the row
above it.
3. All entries in a column below a leading entry are zeros.
4. All leading entries are 1
5. In a column with a leading 1, all other elements are 0.

Uniqueness of the Reduced Echelon Form - Answer-Each matrix is row equivalent to
one and only one reduced echelon matrix.
(Is it consistent? If so, is there only one solution(free variables or not)?)

pivot column - Answer-A column that contains a pivot position

pivot positon - Answer-In A is a location that corresponds to a pivot

Rank(A) (rank of A) - Answer-the number of pivot positions in a matrix A in ref and rref
(should be equal for ref and rref)

(True or False?): If the system is inconsistent, the solution set is empty, even when the
system has free variables. - Answer-True

What is the name given to the variables that correspond with the pivot columns? -
Answer-pivot variables or (basic variables, if you are a weirdo)

What is the name given to the variables that correspond with the non-pivot columns
within the matrix? - Answer-Free variables

When is a linear system considered "consistent?" - Answer-When the rightmost column
of the augmented matrix is not a pivot column.

If a linear system is consistent, what are the two possible outcomes associated with a
system considered as such? - Answer-1) It has a unique solution when there is no free
variable.

, 2) It has infinitely many solutions when there is at least one free variable.

Rouché-Capelli Theorem. (consistency of a linear system defined by ranks) - Answer-
The linear system Ax=b is consistent if and only if :
rank(A) = rank([ A b]) where A is m x n

According to the Rouché-Capelli Theorem, when is a linear system consistent, and how
do we differentiate between unique and infinite solutions. - Answer-Ax=b where A is size
mxn
Consistency: rank(A) = rank ([A b])
1) It has a unique solution when rank(A) = n.
2) It has infinitely many solutions when rank(A) < n.

If a matrix A is a certain size m x n, what does m represent, and what does n represent?
(We could just as easily say it is size X x Y or n x m?) - Answer-m = number of rows
n = number of columns

but really, the number of rows is the left integer m (or X or n)
and really number of columns is the right integer n (or Y or m)

If a matrix A is size m x n, and we wanted to multiply it times matrix b, what size would b
have to "be," no pun intended, in order for the multiplication to be defined? - Answer-
Matrix b would have to have n number of rows, but could have any number of columns,
so size n x w, where w is any integer.

What does the set of all scalar multiples of a nonzero vector U mean geometrically? {cU
| c ∈ R } - Answer-It is a line through the origin and U. (origin when c = 0, and then all
the other values of c are what causes the line to "form")

If b = c₁v₁ + c₂v₂ +c(i)v(i), {v(i) ∈ Rⁿ}, then what is this called, and what are the c(i)
known as? - Answer-Linear combination of v₁, v₂, ..., v(i), and the c(i)s are known as
weights.

True or False? A vector equation b has the same solution set as the linear system
Ax=b. - Answer-True

span{v₁, ..., v(p)} = - Answer-{c₁v₁ + ... + c(p)v(p)}, c(p) is are scalars

if S= span{v₁, ..., v₂}, then what does S contain? - Answer-S contains every scalar
multiple of a vector v(i),
where (i = 1:p)

Which statements are logically equivalent to:
1) A vector b is in span{a₁, ..., aₙ}? - Answer-2) A vector equation x₁a₁ +x₂a₂ + ... + xₙaₙ = b
has a solution (weights).
3) A linear system Ax=b with an augmented matrix
€11,84
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
biggdreamer Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
248
Lid sinds
2 jaar
Aantal volgers
68
Documenten
17956
Laatst verkocht
2 weken geleden

4,0

38 beoordelingen

5
22
4
4
3
6
2
2
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen