100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

linear algebra problem set with answers

Beoordeling
-
Verkocht
-
Pagina's
7
Cijfer
A+
Geüpload op
30-11-2024
Geschreven in
2024/2025

welcome. i found this course being technical to many students in universities and colleges. this summary is very vital for revision purposes as it will enable one to gather the information and content eastly. it involves simple steps with detailed information. feel free to interrogate where you don't understand. welcome.

Meer zien Lees minder
Instelling
Vak

Voorbeeld van de inhoud

Matrices. Problem and answers.

Definition
Let AA be an n×nn×n matrix.
1. AA is nonsingular if the only solution to Ax=0Ax=0 is the
zero solution x=0x=0. Ie the determinant is equal to zero.
Summary
Let AA be an n×nn×n matrix.
1. If AA is nonsingular, then ATAT is nonsingular.
2. AA is nonsingular if and only if the column vectors of AA are
linearly independent.
3. Ax=bAx=b has a unique solution for
every n×1n×1 column vector bb if and only if AA is
nonsingular.
=solution
Problems
1. Determine whether the following matrices are nonsingular or not.
(a) A=⎡⎣⎢12101012−1⎤⎦⎥A=[10121210−1].
(b) B=⎡⎣⎢214101214⎤⎦⎥B=[212101414].
2. Consider the matrix M=[13412]M=[14312].
(a) Show that MM is singular.
(b) Find a non-zero vector vv such that Mv=0Mv=0, where 00 is
the 22-dimensional zero vector.
3. Let AA be the following 3×33×3 matrix.



A=⎡⎣⎢101111−12a⎤⎦⎥.A=[11−101211a].



Determine the values of aa so that the matrix AA is nonsingular.

, 4. Determine the values of a real number aa such that the
matrix A=⎡⎣⎢3200318aa0a+1⎤⎦⎥A=[30a230018aa+1] is
nonsingular.
5. (a) Suppose that a 3×33×3 system of linear equations is
inconsistent. Is the coefficient matrix of the system nonsingular?
(b) Suppose that a 3×33×3 homogeneous system of linear
equations has a solution x1=0,x2=−3,x3=5x1=0,x2=−3,x3=5. Is
the coefficient matrix of the system nonsingular?
(c) Let AA be a 4×44×4 matrix and
let v=⎡⎣⎢⎢⎢1234⎤⎦⎥⎥⎥ and w=⎡⎣⎢⎢⎢4321⎤⎦⎥⎥⎥v=[1234] and w=[
4321]. Suppose that we have Av=AwAv=Aw. Is the
matrix AA nonsingular?
6. Let AA be a 3×33×3 singular matrix. Then show that there exists
a nonzero 3×33×3 matrix BB such that



AB=O,AB=O,



where OO is the 3×33×3 zero matrix.
7. Let AA be an n×nn×n singular matrix. Then prove that there exists a
nonzero n×nn×n matrix BB such that AB=OAB=O, where OO is
the n×nn×n zero matrix.
8. Let v1v1 and v2v2 be 22-dimensional vectors and let AA be
a 2×22×2 matrix.
(a) Show that if v1,v2v1,v2 are linearly dependent vectors, then the
vectors Av1,Av2Av1,Av2 are also linearly dependent.
(b) If v1,v2v1,v2 are linearly independent vectors, can we conclude
that the vectors Av1,Av2Av1,Av2 are also linearly independent?
(c) If v1,v2v1,v2 are linearly independent vectors and AA is
nonsingular, then show that the vectors Av1,Av2Av1,Av2 are also
linearly independent.
9. Let AA be an n×nn×n matrix. Suppose that the sum of elements in
each row of AA is zero. Then prove that the matrix AA is singular.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
30 november 2024
Aantal pagina's
7
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

€10,10
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
cherrygracious

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
cherrygracious Teachme2-tutor
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
1 jaar
Aantal volgers
1
Documenten
223
Laatst verkocht
11 maanden geleden
achievers exam

elaborate exams with questions and answers

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen